Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Cancer ; 41(4): 613-23, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15737567

RESUMEN

Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme, catalysing S-methylation of aromatic and heterocyclic sulphhydryl compounds. TPMT activities and genotypes have been determined in patients with acute lymphoblastic leukaemia (ALL) and in control children. Median red blood cell (RBC) TPMT activity in ALL patients at diagnosis was significantly lower than in controls (median 11.5 pmol/10(7) RBC*hr; range 1.7-30.7; n = 191 vs. 14.6 pmol/10(7) RBC*hr; range 1.6-50.7; n = 140). This reduction of TPMT activity in ALL patients was not due to differences in the frequency of mutations in the TPMT gene. In concordance with other authors, we found a higher TPMT activity during maintenance treatment with 6-mercaptopurine (6MP) than at diagnosis and in controls. However, we observed that TPMT activity was already significantly increased after the induction therapy, before the patients received 6MP (median 17.5; range 3.9-40.3 pmol/10(7) RBC*hr; n = 139). In vitro experiments indicate that the early increase of TPMT activity during treatment may be explained by the use of antifolates, e.g., methotrexate and trimethoprim.


Asunto(s)
Metiltransferasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Niño , Preescolar , Femenino , Antagonistas del Ácido Fólico/uso terapéutico , Genotipo , Humanos , Masculino , Metotrexato/uso terapéutico , Metiltransferasas/genética , Mutación/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Trimetoprim/uso terapéutico
2.
Clin Chim Acta ; 361(1-2): 95-103, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15990089

RESUMEN

Thiopurines are used for treatment of several diseases. Cytotoxicity is caused by the derived compounds 6-thioguanine nucleotides (TGNs) and methyl-6-thioinosine monophosphate (methylthio-IMP). The 6-thiopurine mononucleotides 6-thio-IMP (thio-IMP), 6-thio-GMP (thio-GMP) and methylthio-IMP can be catabolized by purine 5'-nucleotidase. It has been shown that the various 5'-nucleotidases are key enzymes for (6-thio)-purine metabolism. We aimed to investigate whether the overall 5'-nucleotidase (5'NT) activity is correlated with the efficacy and toxicity of 6-thiopurine nucleotides. Substrate affinity of 5'NT for IMP, GMP, AMP, thio-IMP, thio-GMP and methylthio-IMP was studied in human lymphocytes. For each of the substrates, the pH for optimal overall enzyme activity has been determined at a pH range between 6 and 10. At the optimal pH, assays were performed to establish Km and Vmax values. Optimal pH values for the various substrates were between 7 and 8.5. Km values ranged from 33 to 109 microM, Vmax ranged from 3.99 to 19.5 nmol/10(6) peripheral mononuclear cells (pMNC) h, and Vmax/Km ratios ranged from 105 to 250. The results did not show a distinct preference of 5'NT activity for any of the tested thiopurine nucleotides. The enzyme kinetic studies furthermore revealed substrate inhibition by thio-IMP and thio-GMP as a substrate. Inhibition by thio-GMP also seems to occur in patients treated with 6-mercaptopurine (6 MP); subsequently, this may lead to toxicity in these patients.


Asunto(s)
5'-Nucleotidasa/metabolismo , Guanosina Monofosfato/sangre , Mercaptopurina/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Compuestos de Sulfhidrilo/química , Tioguanina/metabolismo , Niño , Cromatografía Líquida de Alta Presión , Humanos , Concentración de Iones de Hidrógeno , Cinética , Mercaptopurina/farmacología , Especificidad por Sustrato
3.
Ann Clin Biochem ; 40(Pt 1): 86-93, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12542916

RESUMEN

BACKGROUND: Monitoring 6-thiopurine S-methyltransferase (TPMT; EC 2.1.1.67) activity is especially important when patients are treated with 6-thiopurine drugs, since severe bone marrow toxicity may be induced if patients have deficient TPMT activity. METHODS: We have developed a method based on high-performance liquid chromatography (HPLC) for the measurement of TPMT activity in various cell types: erythrocytes (RBC), human peripheral blood mononuclear cells (pMNC) and human malignant lymphoblasts (Molt-F4). The enzymatic activity is measured by the amount of 6-methylmercaptopurine formed, using 6-mercaptopurine (6MP) as substrate and S-adenosylmethionine as co-substrate. RESULTS: The K(m) values calculated for 6MP were 0.54 (RBC), 0.85 (pMNC) and 0.65 (Molt-F4 cells) mmol/L. The K(m) values for S-adenosylmethionine were 11.9 (RBC), 16.4 (pMNC) and 6.65 (Molt-F4 cells) micro mol/L. The assay variation was 8.2-17%. TPMT activity was determined in a control group of 103 children and young adults (44 female, 59 male). The values observed were (mean +/- standard deviation): female children and young adults, 15.1 +/- 4.8 pmol/10(7) cells per h (n = 44); male children and young adults, 15.8 +/- 6.4 pmol/10(7) cells per h (n = 59). No gender or age differences were found. CONCLUSION: The HPLC-based method enables the rapid screening of TPMT activities in large groups of patients treated with 6-thiopurines.


Asunto(s)
Eritrocitos/enzimología , Mercaptopurina/análogos & derivados , Metiltransferasas/sangre , Médula Ósea/efectos de los fármacos , Niño , Cromatografía Líquida de Alta Presión/métodos , Eritrocitos/metabolismo , Humanos , Cinética , Leucocitos Mononucleares/metabolismo , Mercaptopurina/sangre , Valores de Referencia , Reproducibilidad de los Resultados , Factores de Tiempo
4.
Artículo en Inglés | MEDLINE | ID: mdl-24940700

RESUMEN

Pediatric acute lymphoblastic leukemia (ALL) is treated with combination chemotherapy including mercaptopurine (6MP) as an important component. Upon its uptake, 6MP undergoes a complex metabolism involving many enzymes and active products. The prognostic value of all the factors engaged in this pathway still remains unclear. This study attempted to determine which components of 6MP metabolism in leukemic blasts and red blood cells are important for 6MP's sensitivity and toxicity. In addition, changes in the enzymatic activities and metabolite levels during the treatment were analyzed. In a cohort (N=236) of pediatric ALL patients enrolled in the Dutch ALL-9 protocol, we studied the enzymes inosine-5'-monophosphate dehydrogenase (IMPDH), thiopurine S-methyltransferase (TPMT), hypoxanthine guanine phosphoribosyl transferase (HGPRT), and purine nucleoside phosphorylase (PNP) as well as thioguanine nucleotides (TGN) and methylthioinosine nucleotides (meTINs). Activities of selected enzymes and levels of 6MP derivatives were measured at various time points during the course of therapy. The data obtained and the toxicity related parameters available for these patients were correlated with each other. We found several interesting relations, including high concentrations of two active forms of 6MP--TGN and meTIN--showing a trend toward association with better in vitro antileukemic effect of 6MP. High concentrations of TGN and elevated activity of HGPRT were found to be significantly associated with grade III/IV leucopenia. However, a lot of data of enzymatic activities and metabolite concentrations as well as clinical toxicity were missing, thereby limiting the number of assessed relations. Therefore, although a complex study of 6MP metabolism in ALL patients is feasible, it warrants more robust and strict data collection in order to be able to draw more reliable conclusions.


Asunto(s)
Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Mercaptopurina/metabolismo , Mercaptopurina/uso terapéutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Adolescente , Antineoplásicos/farmacología , Niño , Preescolar , Eritrocitos/efectos de los fármacos , Eritrocitos/enzimología , Humanos , Mercaptopurina/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre
5.
Nanotoxicology ; 7(6): 1152-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22783888

RESUMEN

Humans and the environment can come into contact with nanomaterials through a wide range of applications during all stages of the life cycle of nanoproducts. The aim of this commentary is to present an assessment of the potential for exposure and thus identify possible environmental, health and safety (EHS) issues for nanomaterials used in 10 technology sectors. We analysed all life cycle stages with regard to potential for exposure of workers, consumers/patients, and the environment. A wide variety of nanomaterials are used of which many have negligible potential for exposure, while others have medium or even high potential for exposure. Based on the likelihood of exposure, it appears that in general most attention should be paid to the agrifood, chemistry/materials, textiles and health sectors; and less to the information and communication technology (ICT), security and energy sectors. Toxicity and exposure are both important; however, the EHS impact of nanomaterials is always dependent on their particular use.


Asunto(s)
Exposición a Riesgos Ambientales , Industrias , Nanoestructuras/química , Nanotecnología , Exposición Profesional , Contaminación Ambiental/prevención & control , Nanoestructuras/efectos adversos , Factores de Riesgo
6.
Pediatr Blood Cancer ; 46(4): 434-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16333815

RESUMEN

BACKGROUND: Inosine 5'-monophosphate dehydrogenase (IMPDH; EC1.1.1.205) catalyzes the rate-limiting step in guanine nucleotide biosynthesis, and may play an important role in treatment of patients with antipurines. METHODS: We used an HPLC method to measure the IMPDH activity in peripheral blood and bone marrow mononuclear cells (MNC). IMPDH activities were determined in children who were diagnosed with and treated for acute lymphoblastic leukemia (ALL), and in a group of control children. RESULTS: The median IMPDH activity for control children was 350 pmol/10(6) pMNC/hr (range 97-896; n = 47). No gender or age differences were observed. IMPDH activity at diagnosis of ALL was correlated with the percentage of peripheral blood lymphoblasts (r = 0.474; P < 0.001; n = 71). The median IMPDH activity at diagnosis was 410 pmol/10(6) pMNC/hr (range 40-2009; n = 76), significantly higher than for controls (P = 0.012). IMPDH activity significantly decreased after induction treatment, and during treatment with methotrexate (MTX) infusions (median 174 pmol/10(6) pMNC/hr; range 52-516; n = 21). The activity remained low during maintenance treatment with 6-mercaptopurine (6MP) and MTX, at a significantly lower level than for controls (P < 0.004). One year after cessation of treatment IMPDH activity returned to normal values. CONCLUSION: The decrease of IMPDH activity at remission of ALL seems to be at least partly due to the eradication of lymphoblasts with the type 2 isoform of the enzyme.


Asunto(s)
IMP Deshidrogenasa/metabolismo , Leucocitos Mononucleares/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Adolescente , Adulto , Niño , Preescolar , Activación Enzimática , Femenino , Humanos , IMP Deshidrogenasa/química , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA