Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35009895

RESUMEN

The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts' synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu- Co- and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Análisis Costo-Beneficio , Técnicas Electroquímicas , Electrodos , Glucosa , Óxidos
2.
Molecules ; 26(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34771081

RESUMEN

Heteroatom doping is considered an efficient strategy when tuning the electronic and structural modulation of catalysts to achieve improved performance towards renewable energy applications. Herein, we synthesized a series of carbon-based hierarchical nanostructures through the controlled pyrolysis of Co-MOF (metal organic framework) precursors followed by in situ phosphidation. Two kinds of catalysts were prepared: metal nanoparticles embedded in carbon nanotubes, and metal nanoparticles dispersed on the carbon surface. The results proved that the metal nanoparticles embedded in carbon nanotubes exhibit enhanced ORR electrocatalytic performance, owed to the enriched catalytic sites and the mass transfer facilitating channels provided by the hierarchical porous structure of the carbon nanotubes. Furthermore, the phosphidation of the metal nanoparticles embedded in carbon nanotubes (P-Co-CNTs) increases the surface area and porosity, resulting in faster electron transfer, greater conductivity, and lower charge transfer resistance towards ORR pathways. The P-Co-CNT catalyst shows a half-wave potential of 0.887 V, a Tafel slope of 67 mV dec-1, and robust stability, which are comparatively better than the precious metal catalyst (Pt/C). Conclusively, this study delivers a novel path for designing multiple crystal phases with improved catalytic performance for energy devices.

3.
J Colloid Interface Sci ; 677(Pt A): 1120-1133, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39142153

RESUMEN

Designing efficient dual-functional catalysts for photocatalytic oxygen reduction to produce hydrogen peroxide (H2O2) and photodegradation of dye pollutants is challenging. In this work, we designed and fabricated an S-scheme heterojunction (g-C3N4/ZnO composite photocatalyst) via one-pot calcination of a mixture of ZIF-8 and melamine in the KCl/LiCl molten salt medium. The KCN/ZnO composite produced 4.72 mM of H2O2 within 90 min under illumination (with AM 1.5 filter), which is almost 1.3 and 7.8 times than that produced over KCN and ZnO, respectively. Simultaneously, the KCN/ZnO also showed excellent photodegradation performance for the dye pollutants (Rhodamine B, RhB), with a removal rate of 92 % within 2 h. The apparent degradation rate constant of RhB over KCN/ZnO was approximately 5-8 times that of KCN and ZnO. In the photocatalytic process, photo-generated holes and superoxide radicals are the main active species. Oxygen (O2) was mainly reduced to produce H2O2 via a two-electron (2e-) pathway with superoxide radicals as intermediates and the 2e- oxygen reduction reaction selectivity of KCN/ZnO was close to 69.82 %. Photo-generated holes are mainly responsible for the degradation of RhB. Compared with pure KCN and ZnO, the enhanced photocatalytic activity of the KCN/ZnO composite is mainly attributed to the following aspects: 1) larger specific surface area and pore volume is beneficial to expose more active sites; 2) stronger light harvesting ability and red-shifted absorption edge bestow the compound a stronger light utilization efficiency; 3) the construction of S-scheme heterostructure between KCN and ZnO improve the photogenerated electron-hole pairs separation ability and bestow photogenerated carriers a higher redox potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA