Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(28): 7331-7336, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652366

RESUMEN

Aridification is often considered a major driver of long-term ecological change and hominin evolution in eastern Africa during the Plio-Pleistocene; however, this hypothesis remains inadequately tested owing to difficulties in reconstructing terrestrial paleoclimate. We present a revised aridity index for quantifying water deficit (WD) in terrestrial environments using tooth enamel δ18O values, and use this approach to address paleoaridity over the past 4.4 million years in eastern Africa. We find no long-term trend in WD, consistent with other terrestrial climate indicators in the Omo-Turkana Basin, and no relationship between paleoaridity and herbivore paleodiet structure among fossil collections meeting the criteria for WD estimation. Thus, we suggest that changes in the abundance of C4 grass and grazing herbivores in eastern Africa during the Pliocene and Pleistocene may have been decoupled from aridity. As in modern African ecosystems, other factors, such as rainfall seasonality or ecological interactions among plants and mammals, may be important for understanding the evolution of C4 grass- and grazer-dominated biomes.


Asunto(s)
Clima , Fósiles , Hominidae , Paleontología , África Oriental , Animales , Evolución Biológica , Biomasa , Celulosa/análisis , Esmalte Dental/química , Ecología , Ecosistema , Ambiente , Geografía , Herbivoria , Kenia , Isótopos de Oxígeno/análisis , Hojas de la Planta/metabolismo , Plantas , Poaceae , Análisis de Regresión
2.
Proc Natl Acad Sci U S A ; 112(37): 11467-72, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26240344

RESUMEN

A large stable isotope dataset from East and Central Africa from ca. 30 regional collection sites that range from forest to grassland shows that most extant East and Central African large herbivore taxa have diets dominated by C4 grazing or C3 browsing. Comparison with the fossil record shows that faunal assemblages from ca. 4.1-2.35 Ma in the Turkana Basin had a greater diversity of C3-C4 mixed feeding taxa than is presently found in modern East and Central African environments. In contrast, the period from 2.35 to 1.0 Ma had more C4-grazing taxa, especially nonruminant C4-grazing taxa, than are found in modern environments in East and Central Africa. Many nonbovid C4 grazers became extinct in Africa, notably the suid Notochoerus, the hipparion equid Eurygnathohippus, the giraffid Sivatherium, and the elephantid Elephas. Other important nonruminant C4-grazing taxa switched to browsing, including suids in the lineage Kolpochoerus-Hylochoerus and the elephant Loxodonta. Many modern herbivore taxa in Africa have diets that differ significantly from their fossil relatives. Elephants and tragelaphin bovids are two groups often used for paleoecological insight, yet their fossil diets were very different from their modern closest relatives; therefore, their taxonomic presence in a fossil assemblage does not indicate they had a similar ecological function in the past as they do at present. Overall, we find ecological assemblages of C3-browsing, C3-C4-mixed feeding, and C4-grazing taxa in the Turkana Basin fossil record that are different from any modern ecosystem in East or Central Africa.


Asunto(s)
Dieta/veterinaria , Herbivoria/fisiología , Mamíferos/fisiología , Animales , Evolución Biológica , Isótopos de Carbono/análisis , Ecología , Ecosistema , Fósiles , Hominidae , Kenia , Paleontología , Datación Radiométrica , Porcinos
3.
Proc Natl Acad Sci U S A ; 111(1): 121-4, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344276

RESUMEN

Despite discoveries of relatively complete hands from two early hominin species (Ardipithecus ramidus and Australopithecus sediba) and partial hands from another (Australopithecus afarensis), fundamental questions remain about the evolution of human-like hand anatomy and function. These questions are driven by the paucity of hand fossils in the hominin fossil record between 800,000 and 1.8 My old, a time interval well documented for the emergence and subsequent proliferation of Acheulian technology (shaped bifacial stone tools). Modern and Middle to Late Pleistocene humans share a suite of derived features in the thumb, wrist, and radial carpometacarpal joints that is noticeably absent in early hominins. Here we show that one of the most distinctive features of this suite in the Middle Pleistocene to recent human hand, the third metacarpal styloid process, was present ∼1.42 Mya in an East African hominin from Kaitio, West Turkana, Kenya. This fossil thus provides the earliest unambiguous evidence for the evolution of a key shared derived characteristic of modern human and Neandertal hand morphology and suggests that the distinctive complex of radial carpometacarpal joint features in the human hand arose early in the evolution of the genus Homo and probably in Homo erectus sensu lato.


Asunto(s)
Antropología Física/métodos , Hominidae/fisiología , Huesos del Metacarpo/anatomía & histología , Animales , Evolución Biológica , Huesos/fisiología , Femenino , Fósiles , Humanos , Kenia , Masculino , Huesos del Metacarpo/fisiología
4.
J Hum Evol ; 94: 28-44, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27178456

RESUMEN

Most Plio-Pleistocene sites in the Gregory Rift Valley that have yielded abundant fossil hominins lie on the Rift Valley floor. Here we report a new Pliocene site, Kantis, on the shoulder of the Gregory Rift Valley, which extends the geographical range of Australopithecus afarensis to the highlands of Kenya. This species, known from sites in Ethiopia, Tanzania, and possibly Kenya, is believed to be adapted to a wide spectrum of habitats, from open grassland to woodland. The Kantis fauna is generally similar to that reported from other contemporaneous A. afarensis sites on the Rift Valley floor. However, its faunal composition and stable carbon isotopic data from dental enamel suggest a stronger C4 environment than that present at those sites. Although the Gregory Rift Valley has been the focus of paleontologists' attention for many years, surveys of the Rift shoulder may provide new perspective on African Pliocene mammal and hominin evolution.


Asunto(s)
Distribución Animal , Evolución Biológica , Fósiles , Hominidae/fisiología , Animales , Ambiente , Geología , Kenia
5.
Proc Natl Acad Sci U S A ; 110(26): 10501-6, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23733966

RESUMEN

Hominin fossil evidence in the Turkana Basin in Kenya from ca. 4.1 to 1.4 Ma samples two archaic early hominin genera and records some of the early evolutionary history of Paranthropus and Homo. Stable carbon isotopes in fossil tooth enamel are used to estimate the fraction of diet derived from C3 or C4 resources in these hominin taxa. The earliest hominin species in the Turkana Basin, Australopithecus anamensis, derived nearly all of its diet from C3 resources. Subsequently, by ca. 3.3 Ma, the later Kenyanthropus platyops had a very wide dietary range--from virtually a purely C3 resource-based diet to one dominated by C4 resources. By ca. 2 Ma, hominins in the Turkana Basin had split into two distinct groups: specimens attributable to the genus Homo provide evidence for a diet with a ca. 65/35 ratio of C3- to C4-based resources, whereas P. boisei had a higher fraction of C4-based diet (ca. 25/75 ratio). Homo sp. increased the fraction of C4-based resources in the diet through ca. 1.5 Ma, whereas P. boisei maintained its high dependency on C4-derived resources.


Asunto(s)
Dieta/historia , Hominidae , Animales , Isótopos de Carbono , Esmalte Dental/química , Fósiles , Historia Antigua , Humanos , Kenia
6.
Proc Natl Acad Sci U S A ; 107(25): 11245-9, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20534500

RESUMEN

Many important hominid-bearing fossil localities in East Africa are in regions that are extremely hot and dry. Although humans are well adapted to such conditions, it has been inferred that East African environments were cooler or more wooded during the Pliocene and Pleistocene when this region was a central stage of human evolution. Here we show that the Turkana Basin, Kenya--today one of the hottest places on Earth--has been continually hot during the past 4 million years. The distribution of (13)C-(18)O bonds in paleosol carbonates indicates that soil temperatures during periods of carbonate formation were typically above 30 degrees C and often in excess of 35 degrees C. Similar soil temperatures are observed today in the Turkana Basin and reflect high air temperatures combined with solar heating of the soil surface. These results are specific to periods of soil carbonate formation, and we suggest that such periods composed a large fraction of integrated time in the Turkana Basin. If correct, this interpretation has implications for human thermophysiology and implies a long-standing human association with marginal environments.


Asunto(s)
Evolución Biológica , Carbonatos/química , África , Animales , Isótopos de Carbono/química , Clima , Cristalización , Hominidae , Humanos , Kenia , Espectrometría de Masas/métodos , Isótopos de Oxígeno/química , Paleontología/métodos , Suelo , Temperatura
7.
J Hum Evol ; 63(4): 577-85, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22809743

RESUMEN

Hominin specimens Omo I and Omo II from Member I of the Kibish Formation, Ethiopia are attributed to early Homo sapiens, and an age near 196 ka has been suggested for them. The KHS Tuff, within Member II of the Kibish Formation has not been directly dated at the site, but it is believed to have been deposited at or near the time of formation of sapropel S6 in the Mediterranean Sea. Electron microprobe analyses suggest that the KHS Tuff correlates with the WAVT (Waidedo Vitric Tuff) at Herto, Gona, and Konso (sample TA-55), and with Unit D at Kulkuletti in the Ethiopian Rift Valley. Konso sample TA-55 is older than 154 ka, and Unit D at Kulkuletti is dated at 183 ka. These correlations and ages provide strong support for the age originally suggested for the hominin remains Omo I and Omo II, and for correlation of times of deposition in the Kibish region with formation of sapropels in the Mediterranean Sea. The Aliyo Tuff in Member III of the Kibish Formation is dated at 104 ka, and correlates with Gademotta Unit 15 in the Ethiopian Rift Valley.


Asunto(s)
Fósiles , Sedimentos Geológicos/análisis , Erupciones Volcánicas/análisis , Etiopía , Humanos
8.
Evol Anthropol ; 20(6): 217-27, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22170691

RESUMEN

Mesozoic and Cenozoic sedimentary rocks in the Turkana Depression of northern Kenya and southern Ethiopia rest on basement rocks that yield K/Ar cooling ages between 433 and 522 Ma. Proven Cretaceous strata are exposed in Lokitaung Gorge in northwest Kenya. Eocene basalts and rhyolites in Lokitaung Gorge, the Nabwal Hills, and at Kangamajoj, date between 34 and 36 Ma, recording the earliest volcanism in the region. Oligocene volcanic rocks, with associated fossiliferous sedimentary strata at Eragaleit, Nakwai, and Lokone, all west of Lake Turkana, are 23 to 28 Ma old, as is the Langaria Formation east of Lake Turkana. Lower and Middle Miocene volcanic and sedimentary sequences are present both east and west of Lake Turkana, where ages from 17.9 to 9.1 Ma have been measured at many levels. Upper Miocene strata are presently known only at Lothagam, with ages ranging from 7.4 to 6.5 Ma. Deposition of Pliocene strata of the Omo Group begins in the Omo-Turkana, Kerio, and South Turkana basins -4.3 Ma ago and continues in parts of those basins until nearly the present time, but with some gaps. These strata are linked through volcanic ash correlations at many levels, as are Pleistocene strata of the Omo Group (principally the Shungura, Koobi Fora, and Nachukui formations). (40) Ar/(39) Ar dates on many volcanic ash layers within the Omo Group, supplemented by K/Ar ages on intercalated basalts and paleomagnetic polarity stratigraphy, provide excellent age control from 4.2 to 0.75 Ma, although there is a gap in the record between -1 Ma and 0.8 Ma. Members I to III of the Kibish Formation in the lower Omo Valley record deposition between 0.2 and 0.1 Ma ago; Member IV, correlative with the Galana Boi Formation, was deposited principally between 12 and 7 ka BP.


Asunto(s)
Cronología como Asunto , Sedimentos Geológicos , Etiopía , Kenia
9.
Nature ; 433(7027): 733-6, 2005 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-15716951

RESUMEN

In 1967 the Kibish Formation in southern Ethiopia yielded hominid cranial remains identified as early anatomically modern humans, assigned to Homo sapiens. However, the provenance and age of the fossils have been much debated. Here we confirm that the Omo I and Omo II hominid fossils are from similar stratigraphic levels in Member I of the Kibish Formation, despite the view that Omo I is more modern in appearance than Omo II. 40Ar/39Ar ages on feldspar crystals from pumice clasts within a tuff in Member I below the hominid levels place an older limit of 198 +/- 14 kyr (weighted mean age 196 +/- 2 kyr) on the hominids. A younger age limit of 104 +/- 7 kyr is provided by feldspars from pumice clasts in a Member III tuff. Geological evidence indicates rapid deposition of each member of the Kibish Formation. Isotopic ages on the Kibish Formation correspond to ages of Mediterranean sapropels, which reflect increased flow of the Nile River, and necessarily increased flow of the Omo River. Thus the 40Ar/39Ar age measurements, together with the sapropel correlations, indicate that the hominid fossils have an age close to the older limit. Our preferred estimate of the age of the Kibish hominids is 195 +/- 5 kyr, making them the earliest well-dated anatomically modern humans yet described.


Asunto(s)
Fósiles , Cráneo , Silicatos de Aluminio/análisis , Etiopía , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Historia Antigua , Humanos , Compuestos de Potasio/análisis , Silicatos/análisis , Factores de Tiempo
11.
Sci Adv ; 6(10): eaaw4694, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32181331

RESUMEN

Although stone tools generally co-occur with early members of the genus Homo, they are rarely found in direct association with hominins. We report that both Acheulian and Oldowan artifacts and Homo erectus crania were found in close association at 1.26 million years (Ma) ago at Busidima North (BSN12), and ca. 1.6 to 1.5 Ma ago at Dana Aoule North (DAN5) archaeological sites at Gona, Afar, Ethiopia. The BSN12 partial cranium is robust and large, while the DAN5 cranium is smaller and more gracile, suggesting that H. erectus was probably a sexually dimorphic species. The evidence from Gona shows behavioral diversity and flexibility with a lengthy and concurrent use of both stone technologies by H. erectus, confounding a simple "single species/single technology" view of early Homo.


Asunto(s)
Evolución Biológica , Fósiles , Hominidae , Cráneo/anatomía & histología , Animales , Etiopía , Hominidae/anatomía & histología , Hominidae/clasificación , Humanos , Paleontología
12.
Science ; 328(5982): 1105; author reply 1105, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20508112

RESUMEN

White and colleagues (Research Articles, 2 October 2009, pp. 65-67 and www.sciencemag.org/ardipithecus) characterized the paleoenvironment of Ardipithecus ramidus at Aramis, Ethiopia, which they described as containing habitats ranging from woodland to forest patches. In contrast, we find the environmental context of Ar. ramidus at Aramis to be represented by what is commonly referred to as tree- or bush-savanna, with 25% or less woody canopy cover.


Asunto(s)
Ecosistema , Ambiente , Hominidae , África , Animales , Biomasa , Isótopos de Carbono , Carbonatos , Etiopía , Fósiles , Geografía , Mamíferos , Isótopos de Oxígeno , Plantas , Poaceae , Temperatura , Árboles
13.
J Hum Evol ; 55(3): 366-403, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18692219

RESUMEN

The Kibish Formation in southwestern Ethiopia, with an aggregate thickness of approximately 105 m, consists of lacustrine, marginal lacustrine, and deltaic deposits. It is divided into four members numbered I to IV on the basis of erosion surfaces (disconformities) between the strata of each member. It overlies the Mursi and Nkalabong formations, the latter of which is here shown to correlate with the Shungura Formation. Tephra layers in each member allow for secure correlation between geographically separated sections on the basis of the composition of their volcanic glass. Members I, III, and IV of the Kibish Formation appear to have been deposited at the same times as sapropels S7 (197 ka), S4 (104 ka), and S1 (8 ka) in the eastern Mediterranean Sea, respectively. We correlate the KHS Tuff of the Kibish Formation with a >154-kyr-old unnamed tuff in the Konso Formation. Tephra in Member IV may derive from Mount Wenchi, a volcano situated on the divide between the Omo and Blue Nile drainage basins. Thin-bedded sedimentary layers probably represent annual deposition reflecting rapid sedimentation (approximately 30 m/kyr) of parts of the formation. This conclusion is supported by variation in paleomagnetic inclination through a sequence of these layers at KHS. Two fossils of early Homo sapiens (Omo I and Omo II) derive from Member I. Their stratigraphic placement is confirmed by analysis of the KHS Tuff in the lower part of Member II at both fossil sites. The KHS Tuff lies above a disconformity, which itself lies above the fossils at both sites. (40)Ar/(39)Ar dates provide an estimated age of approximately 195 kyr for these fossils. Omo III, a third fossil H. sapiens, probably also derives from Member I of the Kibish Formation and is of similar age. Hominin fossils from AHS, a new site, also derive from Member I. Hominin fossils from CHS can only be placed between 104 ka and 10 ka, the H. sapiens specimen from JHS is most likely 9-13 kyr in age, and a partial skeleton of H. sapiens from Pelvic Corner is most likely approximately 6.6 kyr in age.


Asunto(s)
Fósiles , Sedimentos Geológicos/análisis , Animales , Etiopía , Sedimentos Geológicos/química , Geología , Historia Antigua , Humanos , Moluscos/química , Radioisótopos/análisis , Radiometría , Factores de Tiempo
14.
J Hum Evol ; 55(3): 409-20, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18602675

RESUMEN

The provenance and age of two Homo sapiens fossils (Omo I and Omo II) from the Kibish Formation in southern Ethiopia have been much debated. Here we confirm that Omo I and the somewhat more primitive-looking Omo II calvariae are from similar stratigraphic levels in Member I of the Kibish Formation. Based on (40)Ar/(39)Ar age measurements on alkali feldspar crystals from pumice clasts in the Nakaa'kire Tuff, a tuffaceous bed in Member I just below the hominin levels, we place an older limit of 198+/-14 ka (weighted mean age=196+/-2 ka) for the hominins. A younger limit of 104+/-7 ka (weighted mean age=104+/-1 ka) is provided by feldspars separated from pumice clasts in the Aliyo Tuff in Member III. Geological evidence indicates rapid deposition of each member of the Kibish Formation, concurrent with deposition of sapropels in the Mediterranean Sea. The (40)Ar/(39)Ar age measurements, together with correlations with sapropels, indicate that the hominin fossils are close in age to the older limit. Our preferred estimate of the age of the hominins is 195+/-5 ka, making them the earliest well-dated anatomically modern humans yet described.


Asunto(s)
Benzopiranos/análisis , Fósiles , Sustancias Húmicas/análisis , Datación Radiométrica , Silicatos de Aluminio/análisis , Animales , Argón/análisis , Etiopía , Eucariontes/química , Sedimentos Geológicos/análisis , Historia Antigua , Humanos , Compuestos de Potasio/análisis , Factores de Tiempo
15.
J Hum Evol ; 55(3): 360-5, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18617219

RESUMEN

Cranial and skeletal remains of modern humans, Homo sapiens, were discovered in the Kibish Formation in 1967 by a team from the Kenya National Museums directed by Richard Leakey. Omo I, from Kamoya's Hominid Site (KHS), consists of much of a skeleton, including most of the cranial vault, parts of the face and mandible, and many postcranial elements. Omo II, from Paul's Hominid Site (PHS), is a virtually complete calvaria. Only a limited fauna and a few stone artifacts attributed to the Middle Stone Age were recovered in conjunction with the fossil hominids. The available dating techniques suggested a very early age, over 100 ka, for Member I, from which the Omo I and Omo II fossils were recovered. However, in subsequent decades, the reliability of the dates and the provenance of the Kibish hominids were repeatedly questioned. The papers in this volume provide a detailed stratigraphic analysis of the Kibish Formation and a series of new radiometric dates that indicate an age of 196+/-2 ka for Member I and 104+/-1 for Member III, confirming the antiquity of the lower parts of the Kibish Formation and, in turn, the fossils from Member I. Studies of the postcranial remains of Omo I indicate an overall modern human morphology with a number of primitive features. Studies of an extensive lithic record from Members I and III indicate a Middle Stone Age technology comparable to assemblages of similar age elsewhere in Ethiopia. Studies of the mammalian, avian, and fish faunas indicate overall similarities to those found in the region today, with a few distinctive differences.


Asunto(s)
Fósiles , Sedimentos Geológicos/análisis , Paleontología , Animales , Antropología , Etiopía , Sedimentos Geológicos/química , Historia Antigua , Humanos , Factores de Tiempo
16.
J Hum Evol ; 51(5): 471-9, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16815529

RESUMEN

Recent geologic study shows that all hominins and nearly all other published mammalian fossils from Paleontological Collection Area 123, Koobi Fora, Kenya, derive from levels between the KBS Tuff (1.87+/-0.02 Ma) and the Lower Ileret Tuff (1.53+/-0.01 Ma). More specifically, the fossils derive from 53 m of section below the Lower Ileret Tuff, an interval in which beds vary markedly laterally, especially those units containing molluscs and algal stromatolites. The upper Burgi Member (approximately 2.00-1.87 Ma) crops out only in the southwestern part of Area 123. Adjacent Area 110 contains larger exposures of the member, and there the KBS Tuff is preserved as an airfall ash in lacustrine deposits and also as a fluvially redeposited ash. We observed no mammalian fossils in situ in this member in Area 123, but surface specimens have been documented in some monographic treatments. Fossil hominins from Area 123 were attributed to strata above the KBS Tuff in the 1970s, but later they were assigned to strata below the KBS Tuff (now called the upper Burgi Member). This study definitively places the Area 123 hominins in the KBS Member. Most of these hominins are between 1.60 and 1.65 myr in age, but the youngest may date to only 1.53 Ma, and the oldest, to 1.75 Ma. All are 0.15-0.30 myr younger than previously estimated. The new age estimates, in conjunction with published taxonomic attributions of fossils, suggest that at least two species of Homo coexisted in the region along with A. boisei until at least 1.65 Ma. Comparison of crania KNM-ER 1813 and KNM-ER 1470, which were believed to be of comparable age, is at the focus of the debate over whether Homo habilis sensu lato is in fact composed of two species: Homo habilis and Homo rudolfensis. These two crania are separated in time by approximately 0.25 myr, and therefore, arguments for their conspecificity no longer need to confront the issue of unusually high contemporaneous variation within a single species.


Asunto(s)
Fósiles , Sedimentos Geológicos/clasificación , Hominidae/anatomía & histología , Animales , Antropología Física , Hominidae/clasificación , Humanos , Kenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA