Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Biol Chem ; 294(10): 3603-3617, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30635403

RESUMEN

Cardiovascular disease (CVD) remains the leading cause of death globally, and heart failure is a major component of CVD-related morbidity and mortality. The development of cardiac hypertrophy in response to hemodynamic overload is initially considered to be beneficial; however, this adaptive response is limited and, in the presence of prolonged stress, will transition to heart failure. Yes-associated protein (YAP), the central downstream effector of the Hippo signaling pathway, regulates proliferation and survival in mammalian cells. Our previous work demonstrated that cardiac-specific loss of YAP leads to increased cardiomyocyte (CM) apoptosis and impaired CM hypertrophy during chronic myocardial infarction (MI) in the mouse heart. Because of its documented cardioprotective effects, we sought to determine the importance of YAP in response to acute pressure overload (PO). Our results indicate that endogenous YAP is activated in the heart during acute PO. YAP activation that depended upon RhoA was also observed in CMs subjected to cyclic stretch. To examine the function of endogenous YAP during acute PO, Yap+/flox;Creα-MHC (YAP-CHKO) and Yap+/flox mice were subjected to transverse aortic constriction (TAC). We found that YAP-CHKO mice had attenuated cardiac hypertrophy and significant increases in CM apoptosis and fibrosis that correlated with worsened cardiac function after 1 week of TAC. Loss of CM YAP also impaired activation of the cardioprotective kinase Akt, which may underlie the YAP-CHKO phenotype. Together, these data indicate a prohypertrophic, prosurvival function of endogenous YAP and suggest a critical role for CM YAP in the adaptive response to acute PO.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomegalia/metabolismo , Fosfoproteínas/metabolismo , Presión , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis , Cardiomegalia/etiología , Cardiomegalia/patología , Ciclo Celular , Proteínas de Ciclo Celular , Regulación hacia Abajo/genética , Fibrosis , Técnicas de Inactivación de Genes , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fosfohidrolasa PTEN/metabolismo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Señalizadoras YAP , Proteína de Unión al GTP rhoA/metabolismo
2.
J Biol Chem ; 292(42): 17431-17448, 2017 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-28882890

RESUMEN

Voltage-gated Na+ (NaV) channels are key regulators of myocardial excitability, and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent alterations in NaV1.5 channel inactivation are emerging as a critical determinant of arrhythmias in heart failure. However, the global native phosphorylation pattern of NaV1.5 subunits associated with these arrhythmogenic disorders and the associated channel regulatory defects remain unknown. Here, we undertook phosphoproteomic analyses to identify and quantify in situ the phosphorylation sites in the NaV1.5 proteins purified from adult WT and failing CaMKIIδc-overexpressing (CaMKIIδc-Tg) mouse ventricles. Of 19 native NaV1.5 phosphorylation sites identified, two C-terminal phosphoserines at positions 1938 and 1989 showed increased phosphorylation in the CaMKIIδc-Tg compared with the WT ventricles. We then tested the hypothesis that phosphorylation at these two sites impairs fibroblast growth factor 13 (FGF13)-dependent regulation of NaV1.5 channel inactivation. Whole-cell voltage-clamp analyses in HEK293 cells demonstrated that FGF13 increases NaV1.5 channel availability and decreases late Na+ current, two effects that were abrogated with NaV1.5 mutants mimicking phosphorylation at both sites. Additional co-immunoprecipitation experiments revealed that FGF13 potentiates the binding of calmodulin to NaV1.5 and that phosphomimetic mutations at both sites decrease the interaction of FGF13 and, consequently, of calmodulin with NaV1.5. Together, we have identified two novel native phosphorylation sites in the C terminus of NaV1.5 that impair FGF13-dependent regulation of channel inactivation and may contribute to CaMKIIδc-dependent arrhythmogenic disorders in failing hearts.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Insuficiencia Cardíaca/metabolismo , Activación del Canal Iónico , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Sustitución de Aminoácidos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Células HEK293 , Insuficiencia Cardíaca/genética , Humanos , Ratones , Ratones Transgénicos , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fosforilación
3.
Am Surg ; 90(7): 1971-1973, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38553704

RESUMEN

As rib fractures are a common injury in the geriatric trauma population and can result in increased morbidity and mortality, we sought to understand predicting outcomes in this population. We hypothesized that frail geriatric rib fracture patients would have worse outcomes than their non-frail counterparts. This single-center retrospective study includes patients from July 2019 to June 2022 who were ≥65 years-old, had ≥ 2 rib fractures, and a documented Clinical Frailty Scale score. Univariate analysis was conducted comparing frail vs non-frail, and ≤3 rib fractures vs >3 rib fractures. Multivariate logistic regressions for risk of mortality and of frailty were performed. We found higher mortality in patients with >3 rib fractures on univariate analysis; however, this did not hold true on multivariate analysis. Frail patients were less likely discharged home and had a lower functional status at discharge. Further investigation is needed to effectively improve outcomes for geriatric trauma patients with rib fractures.


Asunto(s)
Fragilidad , Fracturas de las Costillas , Humanos , Fracturas de las Costillas/complicaciones , Fracturas de las Costillas/mortalidad , Anciano , Estudios Retrospectivos , Femenino , Masculino , Fragilidad/complicaciones , Anciano de 80 o más Años , Evaluación Geriátrica , Anciano Frágil
4.
Sci Rep ; 13(1): 4046, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36899057

RESUMEN

A Kinase Interacting Protein 1 (AKIP1) is a signalling adaptor that promotes physiological hypertrophy in vitro. The purpose of this study is to determine if AKIP1 promotes physiological cardiomyocyte hypertrophy in vivo. Therefore, adult male mice with cardiomyocyte-specific overexpression of AKIP1 (AKIP1-TG) and wild type (WT) littermates were caged individually for four weeks in the presence or absence of a running wheel. Exercise performance, heart weight to tibia length (HW/TL), MRI, histology, and left ventricular (LV) molecular markers were evaluated. While exercise parameters were comparable between genotypes, exercise-induced cardiac hypertrophy was augmented in AKIP1-TG vs. WT mice as evidenced by an increase in HW/TL by weighing scale and in LV mass on MRI. AKIP1-induced hypertrophy was predominantly determined by an increase in cardiomyocyte length, which was associated with reductions in p90 ribosomal S6 kinase 3 (RSK3), increments of phosphatase 2A catalytic subunit (PP2Ac) and dephosphorylation of serum response factor (SRF). With electron microscopy, we detected clusters of AKIP1 protein in the cardiomyocyte nucleus, which can potentially influence signalosome formation and predispose a switch in transcription upon exercise. Mechanistically, AKIP1 promoted exercise-induced activation of protein kinase B (Akt), downregulation of CCAAT Enhancer Binding Protein Beta (C/EBPß) and de-repression of Cbp/p300 interacting transactivator with Glu/Asp rich carboxy-terminal domain 4 (CITED4). Concludingly, we identified AKIP1 as a novel regulator of cardiomyocyte elongation and physiological cardiac remodelling with activation of the RSK3-PP2Ac-SRF and Akt-C/EBPß-CITED4 pathway. These findings suggest that AKIP1 may serve as a nodal point for physiological reprogramming of cardiac remodelling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Miocitos Cardíacos , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cardiomegalia/patología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Remodelación Ventricular
5.
J Mol Cell Cardiol ; 50(1): 230-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20971119

RESUMEN

Cardiac myocyte overexpression of CaMKIIδ(C) leads to cardiac hypertrophy and heart failure (HF) possibly caused by altered myocyte Ca(2+) handling. A central defect might be the marked CaMKII-induced increase in diastolic sarcoplasmic reticulum (SR) Ca(2+) leak which decreases SR Ca(2+) load and Ca(2+) transient amplitude. We hypothesized that inhibition of CaMKII near the SR membrane would decrease the leak, improve Ca(2+) handling and prevent the development of contractile dysfunction and HF. To test this hypothesis we crossbred CaMKIIδ(C) overexpressing mice (CaMK) with mice expressing the CaMKII-inhibitor AIP targeted to the SR via a modified phospholamban (PLB)-transmembrane-domain (SR-AIP). There was a selective decrease in the amount of activated CaMKII in the microsomal (SR/membrane) fraction prepared from these double-transgenic mice (CaMK/SR-AIP) mice. In ventricular cardiomyocytes from CaMK/SR-AIP mice, SR Ca(2+) leak, assessed both as diastolic Ca(2+) shift into SR upon tetracaine in intact myocytes or integrated Ca(2+) spark release in permeabilized myocytes, was significantly reduced. The reduced leak was accompanied by enhanced SR Ca(2+) load and twitch amplitude in double-transgenic mice (vs. CaMK), without changes in SERCA expression or NCX function. However, despite the improved myocyte Ca(2+) handling, cardiac hypertrophy and remodeling was accelerated in CaMK/SR-AIP and cardiac function worsened. We conclude that while inhibition of SR localized CaMKII in CaMK mice improves Ca(2+) handling, it does not necessarily rescue the HF phenotype. This implies that a non-SR CaMKIIδ(C) exerts SR-independent effects that contribute to hypertrophy and HF, and this CaMKII pathway may be exacerbated by the global enhancement of Ca transients.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Retículo Sarcoplasmático/metabolismo , Animales , Western Blotting , Ecocardiografía , Ventrículos Cardíacos/citología , Ratones , Ratones Transgénicos , Miocitos Cardíacos/metabolismo , Fosforilación
6.
Circ Res ; 105(4): 316-25, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19608982

RESUMEN

RATIONALE: Pathological cardiac myocyte hypertrophy is thought to be induced by the persistent increases in intracellular Ca(2+) needed to maintain cardiac function when systolic wall stress is increased. Hypertrophic Ca(2+) binds to calmodulin (CaM) and activates the phosphatase calcineurin (Cn) and CaM kinase (CaMK)II. Cn dephosphorylates cytoplasmic NFAT (nuclear factor of activated T cells), inducing its translocation to the nucleus where it activates antiapoptotic and hypertrophic target genes. Cytoplasmic CaMKII regulates Ca(2+) handling proteins but whether or not it is directly involved in hypertrophic and survival signaling is not known. OBJECTIVE: This study explored the hypothesis that cytoplasmic CaMKII reduces NFAT nuclear translocation by inhibiting the phosphatase activity of Cn. METHODS AND RESULTS: Green fluorescent protein-tagged NFATc3 was used to determine the cellular location of NFAT in cultured neonatal rat ventricular myocytes (NRVMs) and adult feline ventricular myocytes. Constitutively active (CaMKII-CA) or dominant negative (CaMKII-DN) mutants of cytoplasmic targeted CaMKII(deltac) were used to activate and inhibit cytoplasmic CaMKII activity. In NRVM CaMKII-DN (48.5+/-3%, P<0.01 versus control) increased, whereas CaMKII-CA decreased (5.9+/-1%, P<0.01 versus control) NFAT nuclear translocation (Control: 12.3+/-1%). Cn inhibitors were used to show that these effects were caused by modulation of Cn activity. Increasing Ca(2+) increased Cn-dependent NFAT translocation (to 71.7+/-7%, P<0.01) and CaMKII-CA reduced this effect (to 17.6+/-4%). CaMKII-CA increased TUNEL and caspase-3 activity (P<0.05). CaMKII directly phosphorylated Cn at Ser197 in CaMKII-CA infected NRVMs and in hypertrophied feline hearts. CONCLUSION: These data show that activation of cytoplasmic CaMKII inhibits NFAT nuclear translocation by phosphorylation and subsequent inhibition of Cn.


Asunto(s)
Calcineurina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción NFATC/metabolismo , Transporte Activo de Núcleo Celular/genética , Animales , Calcineurina/genética , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Calmodulina/genética , Calmodulina/metabolismo , Cardiomegalia/genética , Cardiomegalia/patología , Caspasa 3/genética , Caspasa 3/metabolismo , Gatos , Núcleo Celular/genética , Citoplasma/genética , Citoplasma/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Humanos , Células K562 , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Miocitos Cardíacos/patología , Factores de Transcripción NFATC/genética , Fosforilación/genética , Ratas , Ratas Sprague-Dawley
7.
Circ Heart Fail ; 10(5): e003840, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28487342

RESUMEN

BACKGROUND: Considerable evidence suggests that calcium/calmodulin-dependent protein kinase II (CaMKII) overactivity plays a crucial role in the pathophysiology of heart failure (HF), a condition characterized by excessive ß-adrenoceptor (ß-AR) stimulation. Recent studies indicate a significant cross talk between ß-AR signaling and CaMKII activation presenting CaMKII as a possible downstream mediator of detrimental ß-AR signaling in HF. In this study, we investigated the effect of chronic ß-AR blocker treatment on CaMKII activity in human and experimental HF. METHODS AND RESULTS: Immunoblot analysis of myocardium from end-stage HF patients (n=12) and non-HF subjects undergoing cardiac surgery (n=12) treated with ß-AR blockers revealed no difference in CaMKII activity when compared with non-ß-AR blocker-treated patients. CaMKII activity was judged by analysis of CaMKII expression, autophosphorylation, and oxidation and by investigating the phosphorylation status of CaMKII downstream targets. To further evaluate these findings, CaMKIIδC transgenic mice were treated with the ß1-AR blocker metoprolol (270 mg/kg*d). Metoprolol significantly reduced transgene-associated mortality (n≥29; P<0.001), attenuated the development of cardiac hypertrophy (-14±6% heart weight/tibia length; P<0.05), and strongly reduced ventricular arrhythmias (-70±22% premature ventricular contractions; P<0.05). On a molecular level, metoprolol expectedly decreased protein kinase A-dependent phospholamban and ryanodine receptor 2 phosphorylation (-42±9% for P-phospholamban-S16 and -22±7% for P-ryanodine receptor 2-S2808; P<0.05). However, this was paralled neither by a reduction in CaMKII autophosphorylation, oxidation, and substrate binding nor a change in the phosphorylation of CaMKII downstream target proteins (n≥11). The lack of CaMKII modulation by ß-AR blocker treatment was confirmed in healthy wild-type mice receiving metoprolol. CONCLUSIONS: Chronic ß-AR blocker therapy in patients and in a mouse model of CaMKII-induced HF is not associated with a change in CaMKII activity. Thus, our data suggest that the molecular effects of ß-AR blockers are not based on a modulation of CaMKII. Directly targeting CaMKII may, therefore, further improve HF therapy in addition to ß-AR blockade.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Metoprolol/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Immunoblotting , Ratones , Ratones Transgénicos
8.
Cell Signal ; 26(5): 1135-46, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24444709

RESUMEN

Contrary to previous assumptions, G proteins do not permanently reside on the plasma membrane, but are constantly monitoring the cytoplasmic surfaces of the plasma membrane and endomembranes. Here, we report that the Gαq and Gα11 proteins locate at the mitochondria and play a role in a complex signaling pathway that regulates mitochondrial dynamics. Our results provide evidence for the presence of the heteromeric G protein (Gαq/11ßγ) at the outer mitochondrial membrane and for Gαq at the inner membrane. Both localizations are necessary to maintain the proper equilibrium between fusion and fission; which is achieved by altering the activity of mitofusin proteins, Drp1, OPA1 and the membrane potential at both the outer and inner mitochondrial membranes. As a result of the absence of Gαq/11, there is a decrease in mitochondrial fusion rates and a decrease in overall respiratory capacity, ATP production and OXPHOS-dependent growth. These findings demonstrate that the presence of Gαq proteins at the mitochondria serves as a physiological function: stabilizing elongated mitochondria and regulating energy production in Drp1 and Opa1 dependent mechanisms. This thereby links organelle dynamics and physiology.


Asunto(s)
Metabolismo Energético , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Animales , Línea Celular , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Membranas Mitocondriales/metabolismo , Células 3T3 NIH , Fosforilación Oxidativa , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/metabolismo
9.
J Cereb Blood Flow Metab ; 33(2): 196-204, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23072745

RESUMEN

A recently discovered protein phosphatase PHLPP (PH domain Leucine-rich repeat Protein Phosphatase) has been shown to dephosphorylate Akt on its hydrophobic motif (Ser473) thereby decreasing Akt kinase activity. We generated PHLPP1 knockout (KO) mice and used them to explore the ability of enhanced in vivo Akt signaling to protect the brain against ischemic insult. Brains from KO mice subjected to middle cerebral artery occlusion (MCAO) for 2 hours showed significantly greater increases in Akt activity and less neurovascular damage after reperfusion than wild-type (WT) mice. Remarkably, infarct volume in the PHLPP1 KO was significantly reduced compared with WT (12.7±2.7% versus 22.9±3.1%) and this was prevented by Akt inhibition. Astrocytes from KO mice and neurons in which PHLPP1 was downregulated showed enhanced Akt activation and diminished cell death in response to oxygen-glucose deprivation. Thus, deletion of PHLPP1 can enhance Akt activation in neurons and astrocytes, and can significantly increase cell survival and diminish infarct size after MCAO. Inhibition of PHLPP could be a therapeutic approach to minimize damage after focal ischemia.


Asunto(s)
Infarto Encefálico/enzimología , Lesiones Encefálicas/enzimología , Eliminación de Gen , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Daño por Reperfusión/enzimología , Animales , Astrocitos/enzimología , Astrocitos/patología , Infarto Encefálico/genética , Infarto Encefálico/patología , Infarto Encefálico/prevención & control , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Lesiones Encefálicas/prevención & control , Activación Enzimática/genética , Glucosa/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Neuronas/enzimología , Neuronas/patología , Proteínas Nucleares/genética , Oxígeno/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA