Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 127(Pt 3): 663-72, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24284069

RESUMEN

ESCRT-I is essential for the multivesicular body (MVB) sorting of ubiquitylated cargo such as epidermal growth factor receptor, as well as for several cellular functions, such as cell division and retroviral budding. ESCRT-I has four subunits; TSG101, VPS28, VPS37 and MVB12. There are several members of VPS37 and MVB12 families in mammalian cells, and their differential incorporation into ESCRT-I could provide function-specific variants of the complex. However, it remains unclear whether these different forms of VPS37 and MVB12 combine randomly or generate selective pairings within ESCRT-I, and what the mechanistic basis for such pairing would be. Here, we show that the incorporation of two MVB12 members, UBAP1 and MVB12A, into ESCRT-I is highly selective with respect to their VPS37 partners. We map the region mediating selective assembly of UBAP1-VPS37A to the core ESCRT-I-binding domain of VPS37A. In contrast, selective integration of UBAP1 requires both the minimal ESCRT-I-binding region and a neighbouring predicted helix. The biochemical specificity in ESCRT-I assembly is matched by functional specialisation as siRNA-mediated depletion of UBAP1, but not MVB12A and MVB12B, disrupts ubiquitin-dependent sorting at the MVB.


Asunto(s)
Proteínas Portadoras/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/genética , Complejos Multiproteicos/metabolismo , Animales , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Receptores ErbB/metabolismo , Humanos , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Unión Proteica , Transporte de Proteínas/genética , ARN Interferente Pequeño , Factores de Transcripción/metabolismo , Ubiquitina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
2.
Semin Cell Dev Biol ; 20(7): 784-92, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19446479

RESUMEN

The Golgi apparatus is a highly dynamic organelle through which nascent proteins released from the endoplasmic reticulum (ER) are trafficked. Proteins are post-translationally modified within the Golgi and subsequently packaged into carriers for transport to a variety of cellular destinations. This transit of proteins, as well as the maintenance of Golgi structure and position, is highly dependent upon the actin and microtubule cytoskeletons and their associated molecular motors. Here we review how motors contribute to the correct functioning of the Golgi in higher eukaryotes and discuss the secretory pathway as a model system for studying cooperation between motor proteins.


Asunto(s)
Aparato de Golgi/metabolismo , Proteínas Motoras Moleculares/metabolismo , Actinas/metabolismo , Animales , Humanos , Microtúbulos/metabolismo , Transporte de Proteínas
3.
Curr Biol ; 21(14): 1245-50, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21757351

RESUMEN

Endosomal sorting complexes required for transport (ESCRTs) regulate several events involving membrane invagination, including multivesicular body (MVB) biogenesis, viral budding, and cytokinesis. In each case, upstream ESCRTs combine with additional factors, such as Bro1 proteins, to recruit ESCRT-III and the ATPase VPS4 in order to drive membrane scission. A clue to understanding how such diverse cellular processes might be controlled independently of each other has been the identification of ESCRT isoforms. Mammalian ESCRT-I comprises TSG101, VPS28, VPS37A-D, and MVB12A/B. These could generate several ESCRT-I complexes, each targeted to a different compartment and able to recruit distinct ESCRT-III proteins. Here we identify a novel ESCRT-I component, ubiquitin-associated protein 1 (UBAP1), which contains a region conserved in MVB12. UBAP1 binds the endosomal Bro1 protein His domain protein tyrosine phosphatase (HDPTP), but not Alix, a Bro1 protein involved in cytokinesis. UBAP1 is required for sorting EGFR to the MVB and for endosomal ubiquitin homeostasis, but not for cytokinesis. UBAP1 is part of a complex that contains a fraction of total cellular TSG101 and that also contains VPS37A but not VPS37C. Hence, the presence of UBAP1, in combination with VPS37A, defines an endosome-specific ESCRT-I complex.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Citocinesis , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Células HeLa , Humanos , Complejos Multiproteicos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
4.
J Cell Sci ; 122(Pt 12): 1979-89, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19454478

RESUMEN

Generating the extended endoplasmic reticulum (ER) network depends on microtubules, which act as tracks for motor-driven ER tubule movement, generate the force to extend ER tubules by means of attachment to growing microtubule plus-ends and provide static attachment points. We have analysed ER dynamics in living VERO cells and find that most ER tubule extension is driven by microtubule motors. Surprisingly, we observe that approximately 50% of rapid ER tubule movements occur in the direction of the centre of the cell, driven by cytoplasmic dynein. Inhibition of this movement leads to an accumulation of lamellar ER in the cell periphery. By expressing dominant-negative kinesin-1 constructs, we show that kinesin-1 drives ER tubule extension towards the cell periphery and that this motility is dependent on the KLC1B kinesin light chain splice form but not on KLC1D. Inhibition of kinesin-1 promotes a shift from tubular to lamellar morphology and slows down the recovery of the ER network after microtubule depolymerisation and regrowth. These observations reconcile previous conflicting studies of kinesin-1 function in ER motility in vivo. Furthermore, our data reveal that cytoplasmic dynein plays a role in ER motility in a mammalian cultured cell, demonstrating that ER motility is more complex than previously thought.


Asunto(s)
Dineínas/fisiología , Retículo Endoplásmico/fisiología , Cinesinas/fisiología , Movimiento/fisiología , Secuencia de Aminoácidos , Animales , Chlorocebus aethiops , Citoplasma/metabolismo , Corriente Citoplasmática/fisiología , Complejo Dinactina , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA