Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arthritis Res Ther ; 26(1): 66, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38468277

RESUMEN

BACKGROUND: CRISPR-Cas9-based genome engineering represents a powerful therapeutic tool for cartilage tissue engineering and for understanding molecular pathways driving cartilage diseases. However, primary chondrocytes are difficult to transfect and rapidly dedifferentiate during monolayer (2D) cell culture, making the lengthy expansion of a single-cell-derived edited clonal population not feasible. For this reason, functional genetics studies focused on cartilage and rheumatic diseases have long been carried out in cellular models that poorly recapitulate the native molecular properties of human cartilaginous tissue (e.g., cell lines, induced pluripotent stem cells). Here, we set out to develop a non-viral CRISPR-Cas9, bulk-gene editing method suitable for chondrocyte populations from different cartilaginous sources. METHODS: We screened electroporation and lipid nanoparticles for ribonucleoprotein (RNP) delivery in primary polydactyly chondrocytes, and optimized RNP reagents assembly. We knocked out RELA (also known as p65), a subunit of the nuclear factor kappa B (NF-κB), in polydactyly chondrocytes and further characterized knockout (KO) cells with RT-qPCR and Western Blot. We tested RELA KO in chondrocytes from diverse cartilaginous sources and characterized their phenotype with RT-qPCR. We examined the chondrogenic potential of wild-type (WT) and KO cell pellets in presence and absence of interleukin-1ß (IL-1ß). RESULTS: We established electroporation as the optimal transfection technique for chondrocytes enhancing transfection and editing efficiency, while preserving high cell viability. We knocked out RELA with an unprecedented efficiency of ~90%, confirming lower inflammatory pathways activation upon IL-1ß stimulation compared to unedited cells. Our protocol could be easily transferred to primary human chondrocytes harvested from osteoarthritis (OA) patients, human FE002 chondroprogenitor cells, bovine chondrocytes, and a human chondrocyte cell line, achieving comparable mean RELA KO editing levels using the same protocol. All KO pellets from primary human chondrocytes retained chondrogenic ability equivalent to WT cells, and additionally displayed enhanced matrix retention under inflamed conditions. CONCLUSIONS: We showcased the applicability of our bulk gene editing method to develop effective autologous and allogeneic off-the-shelf gene therapies strategies and to enable functional genetics studies in human chondrocytes to unravel molecular mechanisms of cartilage diseases.


Asunto(s)
Enfermedades de los Cartílagos , Polidactilia , Humanos , Animales , Bovinos , Condrocitos/metabolismo , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Interleucina-1beta/metabolismo , Enfermedades de los Cartílagos/metabolismo , Polidactilia/metabolismo
2.
Arthrosc Tech ; 5(6): e1395-e1400, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28149738

RESUMEN

Patella baja is a severe complication seen after trauma, prolonged immobilization and surgery. Several surgical methods have been described to proximalize the patella without a change in the patella tendon length. Yet, patella tendon shortening and thickening can be regarded as the hallmark pathology. As such, we describe a technique for the lengthening of the patellar tendon to pathoconformly address underlying patella baja. The technique is reproducible and gives the possibility of an early postoperative mobilization to prevent re-baja-a typical complication after patella baja surgery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA