Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Angew Chem Int Ed Engl ; 61(17): e202114720, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35014138

RESUMEN

Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established. Detailed understanding of the intricate interplay between kinetics and thermodynamics in these very particular [4+2] cycloadditions is essential to push further development and truly expand the scope beyond the ubiquitous addend combinations of electron-rich furans and electron-deficient olefins. Herein, we provide pertinent examples of DA chemistry, taken from various fields, to highlight trends, establish correlations and answer open questions in the field with the aim to support future efforts in the sustainable chemicals and materials production.


Asunto(s)
Furanos , Reacción de Cicloadición , Furanos/química , Cinética , Termodinámica
2.
Microb Cell Fact ; 20(1): 151, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344380

RESUMEN

BACKGROUND: The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. RESULTS: Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding novel enzymes, which function as methoxyhydroquinone 1,2-dioxygenase (mhdA) and 4-oxo-monomethyl adipate esterase (omeA). Deletion of these genes in A. niger confirmed their role in aromatic metabolism and the enzymatic activities of these enzymes were verified. In addition, we demonstrated that mhdA and vhyA deletion mutants can be used as fungal cell factories for the accumulation of vanillic acid and methoxyhydroquinone from guaiacyl lignin units and related aromatic compounds. CONCLUSIONS: This study provides new insights into the fungal aromatic metabolic pathways involved in the degradation of guaiacyl units and related aromatic compounds. The identification of the involved genes unlocks new potential for engineering aromatic compound-producing fungal cell factories.


Asunto(s)
Aspergillus niger/genética , Aspergillus niger/metabolismo , Hidroquinonas/metabolismo , Lignina/metabolismo , Redes y Vías Metabólicas/genética , Ácido Vanílico/metabolismo , Aspergillus niger/enzimología , Benzaldehídos/metabolismo , Hidroquinonas/química , Oxigenasas de Función Mixta , Ácido Vanílico/análisis
3.
Chemistry ; 26(66): 15099-15102, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-32748465

RESUMEN

Pickering emulsions (PEs), emulsions stabilized by solid particles, have shown to be a versatile tool for biphasic catalysis. Here, we report a droplet microfluidic approach for flow PE (FPE) catalysis, further expanding the possibilities for PE catalysis beyond standard batch PE reactions. This microreactor allowed for the inline analysis of the catalytic process with in situ Raman spectroscopy, as demonstrated for the acid-catalyzed deacetalization of benzaldehyde dimethyl acetal to form benzaldehyde. Furthermore, the use of the FPE system showed a nine fold improvement in yield compared to the simple biphasic flow system (FBS), highlighting the advantage of emulsification. Finally, FPE allowed an antagonistic set of reactions, the deacetalization-Knoevenagel condensation, which proved less efficient in FBS due to rapid acid-base quenching. The droplet microfluidic system thus offers a versatile new extension of PE catalysis.

4.
Angew Chem Int Ed Engl ; 59(52): 23480-23484, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-32885556

RESUMEN

A novel route for the production of the versatile chemical building block phthalide from biorenewable furfuryl alcohol and acrylate esters is presented. Two challenges that limit sustainable aromatics production via Diels-Alder (DA) aromatisation-an unfavourable equilibrium position and undesired regioselectivity when using asymmetric addends-were addressed using a dynamic kinetic trapping strategy. Activated acrylates were used to speed up the forward and reverse DA reactions, allowing for one of the four DA adducts to undergo a selective intramolecular lactonisation reaction in the presence of a weak base. The adduct is removed from the equilibrium pool, pulling the system completely to the product with a fixed, desired regiochemistry. A single 1,2-regioisomeric lactone product was formed in up to 86 % yield and the acrylate activating agent liberated for reuse. The lactone was aromatised to give phthalide in almost quantitative yield in the presence of Ac2 O and a catalytic amount of strong acid, or in 79 % using only catalytic acid.


Asunto(s)
Benzofuranos/química , Reacción de Cicloadición/métodos , Furanos/química , Biomasa
5.
Environ Microbiol ; 20(11): 4141-4156, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30246402

RESUMEN

White-rot fungi, such as Dichomitus squalens, degrade all wood components and inhabit mixed-wood forests containing both soft- and hardwood species. In this study, we evaluated how D. squalens responded to the compositional differences in softwood [guaiacyl (G) lignin and higher mannan content] and hardwood [syringyl/guaiacyl (S/G) lignin and higher xylan content] using semi-natural solid cultures. Spruce (softwood) and birch (hardwood) sticks were degraded by D. squalens as measured by oxidation of the lignins using 2D-NMR. The fungal response as measured by transcriptomics, proteomics and enzyme activities showed a partial tailoring to wood composition. Mannanolytic transcripts and proteins were more abundant in spruce cultures, while a proportionally higher xylanolytic activity was detected in birch cultures. Both wood types induced manganese peroxidases to a much higher level than laccases, but higher transcript and protein levels of the manganese peroxidases were observed on the G-lignin rich spruce. Overall, the molecular responses demonstrated a stronger adaptation to the spruce rather than birch composition, possibly because D. squalens is mainly found degrading softwoods in nature, which supports the ability of the solid wood cultures to reflect the natural environment.


Asunto(s)
Basidiomycota/metabolismo , Polyporaceae/metabolismo , Madera/química , Basidiomycota/enzimología , Basidiomycota/genética , Betula/química , Betula/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lacasa/genética , Lacasa/metabolismo , Lignina/química , Lignina/metabolismo , Mananos/química , Mananos/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Picea/química , Picea/microbiología , Madera/microbiología
6.
Chemphyschem ; 19(4): 379-385, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29164764

RESUMEN

The influence of a highly oxygenated, polar protic reaction medium, that is, levulinic acid in 2-ethylhexanoic acid, on the dealumination of two zeolite-supported ruthenium catalysts, namely Ru/H-ß and Ru/H-ZSM-5, has been investigated by 27 Al triple-quantum magic-angle spinning nuclear magnetic resonance spectroscopy (3QMAS NMR). Upon use of these catalysts in the hydrogenation of levulinic acid, the heterogeneity in aluminum speciation is found to increase for both Ru/H-ZSM-5 and Ru/H-ß. For Ru/H-ZSM-5, the symmetric, tetrahedral framework aluminum species (FAL) were found to be mainly converted into distorted tetrahedral FAL species, with limited loss of aluminum to the solution by leaching. A severe loss of both FAL and extra-framework aluminum (EFAL) species into the liquid phase was observed for Ru/H-ß instead. The large decrease in tetrahedral FAL species, in particular, results in a significant decrease in strong acid sites, as corroborated by Fourier transform infrared spectroscopy (FT-IR). This decrease in acidity, evidence of the inferior stability of the strongly acidic sites in Ru/H-ß relative to Ru/H-ZSM-5 under the applied conditions, is considered as the main reason for differences seen in catalyst performance.

7.
Angew Chem Int Ed Engl ; 57(1): 257-261, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29119721

RESUMEN

Establishing structure-activity relationships in complex, hierarchically structured nanomaterials, such as fluid catalytic cracking (FCC) catalysts, requires characterization with complementary, correlated analysis techniques. An integrated setup has been developed to perform transmission electron microscopy (TEM) and single-molecule fluorescence (SMF) microscopy on such nanostructured samples. Correlated structure-reactivity information was obtained for 100 nm thin, microtomed sections of a single FCC catalyst particle using this novel SMF-TEM high-resolution combination. High reactivity in a thiophene oligomerization probe reaction correlated well with TEM-derived zeolite locations, while matrix components, such as clay and amorphous binder material, were found not to display activity. Differences in fluorescence intensity were also observed within and between distinct zeolite aggregate domains, indicating that not all zeolite domains are equally active.

8.
Angew Chem Int Ed Engl ; 57(38): 12458-12462, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30039907

RESUMEN

Facile fabrication of well-intergrown, oriented zeolite membranes with tunable chemical properties on commercially proven substrates is crucial to broadening their applications for separation and catalysis. Rationally determined electrostatic adsorption can enable the direct attachment of a b-oriented silicalite-1 monolayer on a commercial porous ceramic substrate. Homoepitaxially oriented, well-intergrown zeolite ZSM-5 membranes with a tunable composition of Si/Al=25-∞ were obtained by secondary growth of the monolayer. Intercrystallite defects can be eliminated by using Na+ as the mineralizer to promote lateral crystal growth and suppress surface nucleation in the direction of the straight channels, as evidenced by atomic force microscopy measurements. Water permeation testing shows tunable wettability from hydrophobic to highly hydrophilic, giving the potential for a wide range of applications.

9.
J Am Chem Soc ; 139(39): 13632-13635, 2017 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-28902508

RESUMEN

We used single-molecule fluorescence microscopy to study self-diffusion of a feedstock-like probe molecule with nanometer accuracy in the macropores of a micrometer-sized, real-life fluid catalytic cracking (FCC) particle. Movies of single fluorescent molecules allowed their movement through the pore network to be reconstructed. The observed tracks were classified into three different states by machine learning and all found to be distributed homogeneously over the particle. Most probe molecules (88%) were immobile, with the molecule most likely being physisorbed or trapped; the remainder was either mobile (8%), with the molecule moving inside the macropores, or showed hybrid behavior (4%). Mobile tracks had an average diffusion coefficient of D = 8 × 10-14 ± 1 × 10-13 m2 s-1, with the standard deviation thought to be related to the large range of pore sizes found in FCC particles. The developed methodology can be used to evaluate, quantify and map heterogeneities in diffusional properties within complex hierarchically porous materials.

10.
Chemistry ; 23(26): 6305-6314, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28217845

RESUMEN

A micro-spectroscopic method has been developed to probe the accessibility of zeolite crystals using a series of fluorescent 4-(4-diethylaminostyryl)-1-methylpyridinium iodide (DAMPI) probes of increasing molecular size. Staining large zeolite crystals with MFI (ZSM-5) topology and subsequent mapping of the resulting fluorescence using confocal fluorescence microscopy reveal differences in structural integrity: the 90° intergrowth sections of MFI crystals are prone to develop structural imperfections, which act as entrance routes for the probes into the zeolite crystal. Polarization-dependent measurements provide evidence for the probe molecule's alignment within the MFI zeolite pore system. The developed method was extended to BEA (Beta) crystals, showing that the previously observed hourglass pattern is a general feature of BEA crystals with this morphology. Furthermore, the probes can accurately identify at which crystal faces of BEA straight or sinusoidal pores open to the surface. The results show this method can spatially resolve the architecture-dependent internal pore structure of microporous materials, which is difficult to assess using other characterization techniques such as X-ray diffraction.

11.
Chemistry ; 22(1): 199-210, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26611940

RESUMEN

Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This limited activity is in line with their lower external non-basal surface area, supporting the hypothesis of pore mouth catalysis. Further evidence for the latter comes from visible micro-spectroscopy, which shows that the accumulation of aromatic species is limited to the crystal edges, while fluorescence microscopy strongly suggests the presence of polyenylic carbocations. Light polarisation associated with the spatial resolution of fluorescence microscopy reveals that these carbonaceous deposits are aligned only in the larger 10-MR channels of ferrierite at all crystal edges. The reaction is hence further limited to these specific pore mouths.


Asunto(s)
Boca/química , Ácido Oléico/química , Zeolitas/química , Catálisis , Isomerismo , Microscopía Fluorescente , Ácido Oléico/síntesis química
12.
Angew Chem Int Ed Engl ; 55(29): 8164-215, 2016 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-27311348

RESUMEN

Lignin is an abundant biopolymer with a high carbon content and high aromaticity. Despite its potential as a raw material for the fuel and chemical industries, lignin remains the most poorly utilised of the lignocellulosic biopolymers. Effective valorisation of lignin requires careful fine-tuning of multiple "upstream" (i.e., lignin bioengineering, lignin isolation and "early-stage catalytic conversion of lignin") and "downstream" (i.e., lignin depolymerisation and upgrading) process stages, demanding input and understanding from a broad array of scientific disciplines. This review provides a "beginning-to-end" analysis of the recent advances reported in lignin valorisation. Particular emphasis is placed on the improved understanding of lignin's biosynthesis and structure, differences in structure and chemical bonding between native and technical lignins, emerging catalytic valorisation strategies, and the relationships between lignin structure and catalyst performance.


Asunto(s)
Bioingeniería , Biocombustibles , Lignina/biosíntesis , Biocatálisis , Lignina/química , Lignina/aislamiento & purificación
13.
Angew Chem Int Ed Engl ; 55(4): 1368-71, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26684008

RESUMEN

Renewable aromatics can be conveniently synthesized from furanics by introducing an intermediate hydrogenation step in the Diels-Alder (DA) aromatization route, to effectively block retro-DA activity. Aromatization of the hydrogenated DA adducts requires tandem catalysis, using a metal-based dehydrogenation catalyst and solid acid dehydration catalyst in toluene. Herein it is demonstrated that the hydrogenated DA adducts can instead be conveniently converted into renewable aromatics with up to 80% selectivity in a solid-phase reaction with shorter reaction times using only an acidic zeolite, that is, without solvent or dehydrogenation catalyst. Hydrogenated adducts from diene/dienophile combinations of (methylated) furans with maleic anhydride are efficiently converted into renewable aromatics with this new route. The zeolite H-Y was found to perform the best and can be easily reused after calcination.

15.
Chemistry ; 21(13): 5101-9, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25684403

RESUMEN

Glycerol is an attractive renewable building block for the synthesis of polyglycerols, which find application in the cosmetic and pharmaceutical industries. The selective etherification of glycerol to higher oligomers was studied in the presence of CaO colloids and the data are compared with those obtained from NaOH and CaO. The materials were prepared by dispersing CaO, CaCO3 , or Ca(OH)2 onto a carbon nanofiber (CNF) support. Colloidal nanoparticles were subsequently dispensed from the CNF into the reaction mixture to give CaO colloids that have a higher activity than equimolar amounts of bulk CaO and NaOH. Optimization of the reaction conditions allowed us to obtain a product with Gardner color number <2, containing no acrolein and minimal cyclic byproducts. The differences in the CaO colloids originating from CNF and bulk CaO were probed using light scattering and conductivity measurements. The results confirmed that the higher activity of the colloids originating from CaO/CNF was due to their more rapid formation and smaller size compared with colloids from bulk CaO. We thus have developed a practical method for the synthesis of polyglycerols containing low amounts of Ca.

16.
Chemistry ; 20(48): 15686-91, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25322920

RESUMEN

Catechol intradiol dioxygenation is a unique reaction catalyzed by iron-dependent enzymes and non-heme iron(III) complexes. The mechanism by which these systems activate dioxygen in this important metabolic process remains controversial. Using a combination of kinetic measurements and computational modelling of multiple iron(III) catecholato complexes, we have elucidated the catechol cleavage mechanism and show that oxygen binds the iron center by partial dissociation of the substrate from the iron complex. The iron(III) superoxide complex that is formed subsequently attacks the carbon atom of the substrate by a rate-determining C-O bond formation step.


Asunto(s)
Compuestos Férricos/química , Oxígeno/química , Catálisis , Catecoles , Computadores Moleculares , Cinética , Modelos Moleculares , Estructura Molecular
17.
ACS Sustain Chem Eng ; 12(23): 8968-8977, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38872958

RESUMEN

Recent scientific advances in the valorization of lignin, through e.g., (partial-)catalytic depolymerization, require equally state-of-the-art approaches for the analysis of the obtained depolymerized lignins (DLs) or lignin bio-oils. The use of chemometrics in combination with infrared (IR) spectroscopy is one avenue to provide rapid access to pertinent lignin parameters, such as molecular weight (MW) characteristics, which typically require analysis via time-consuming size-exclusion methods, or diffusion-ordered NMR spectroscopy. Importantly, MW serves as a marker for the degree of depolymerization (or recondensation) that the lignin has undergone, and thus probing this parameter is essential for the optimization of depolymerization conditions to achieve DLs with desired properties. Here, we show that our ATR-IR-based chemometrics approach used previously for technical lignin analysis can be extended to analyze these more processed, lignin-derived samples as well. Remarkably, also at this lower end of the MW scale, the use of partial least-squares (PLS) regression models well-predicted the MW parameters for a sample set of 57 depolymerized lignins, with relative errors of 9.9-11.2%. Furthermore, principal component analysis (PCA) showed good correspondence with features in the regression vectors for each of the biomass classes (hardwood, herbaceous/grass, and softwood) obtained from PLS-discriminant analysis (PLS-DA). Overall, we show that the IR spectra of DLs are still amenable to chemometric analysis and specifically to rapid, predictive characterization of their MW, circumventing the time-consuming, tedious, and not generally accessible methods typically employed.

18.
ChemSusChem ; 17(9): e202301464, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38194292

RESUMEN

To expedite the valorisation of lignin as a sustainable component in materials applications, rapid and generally available analytical methods are essential to overcome the bottleneck of lignin characterisation. Where features of a lignin's chemical structure have previously been found to be predicted by Partial Least Squares (PLS) regression models built on Infrared (IR) data, we now show for the first time that this approach can be extended to prediction of the glass transition temperature (Tg), a key physicochemical property. This methodology is shown to be convenient and more robust for prediction of Tg than prediction through empirically derived relationships (e. g., Flory-Fox). The chemometric analysis provided root mean squared errors of prediction (RMSEP) as low as 10.0 °C for a botanically, and a process-diverse set of lignins, and 6.2 °C for kraft-only samples. The PLS models could separately predict both the Tg as well as the degree of allylation (%allyl) for allylated lignin fractions, which were all derived from a single lignin source. The models performed exceptionally well, delivering RMSEP of 6.1 °C, and 5.4 %, respectively, despite the conflicting influences of increasing molecular weight and %allyl on Tg. Finally, the method provided accurate determinations of %allyl with RMSEP of 5.2 %.

19.
Green Chem ; 26(13): 7739-7751, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38957875

RESUMEN

Humins, (side-)products of the acid-catalysed dehydration of carbohydrates, will be produced in substantial quantities with the development of industrial biorefining processes. Most structural knowledge about such humins is based on synthetic model humins prepared at lab-scale from typical carbohydrate(-derived) compounds. Here, we report the first extensive characterisation study of an industrial humin. The soluble humin was generated from pilot plant-scale methanolic cyclodehydration of D-fructose to 5-methoxymethyl-2-furfural (MMF), as part of the Avantium YXY® process to produce FDCA. Purification of the industrial humin followed by fractionation allowed isolation of a water-insoluble, high molecular weight fraction (WIPIH) and a water-soluble, low-to-middle molecular weight soluble fraction (WES). Characterisation by elemental analysis, thermogravimetry, IR and NMR spectroscopy and size exclusion chromatography provided a detailed picture of the humin structure in both fractions. Aided by a comprehensive NMR spectral library of furanic model compounds, we identified the main furanic building blocks and inter-unit linkages and propose a structure for this industrial humin sample. The WIPIH and WES fractions were found to be composed of furanic rings interconnected by short aliphatic chains containing a wide range of functionalities including alcohols, ethers, carboxylic acids, esters, aldehydes and ketones. The low level of crosslinking and high functional group content of the industrial humin differ from the more extensively studied, (highly over-)condensed synthetic model humins, towards which they can be considered intermediates. The structural and compositional insights into the nature of an actual industrial humin open up a broad spectrum of valorisation opportunities.

20.
Chemistry ; 19(44): 15012-8, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-24105732

RESUMEN

A one-pot method has been developed for the oxidative cleavage of internal alkenes into aldehydes by using 0.5 mol% of the nonheme iron complex [Fe(OTf)2(mix-bpbp)] (bpbp=N,N'-bis(2-picolyl)-2,2'-bipyrrolidine) as catalyst and 1.5 equivalents of hydrogen peroxide and 1 equivalent of sodium periodate as oxidants. A mixture of diastereomers of the chiral bpbp ligand can be used, thereby omitting the need for resolution of its optically active components. The cleavage reaction can be performed in one pot within 20 h and under ambient conditions. Addition of water after the epoxidation, acidification and subsequent pH neutralization are crucial to perform the epoxidation, hydrolysis, and subsequent diol cleavage in one pot. High aldehyde yields can be obtained for the cleavage of internal aliphatic double bonds with cis and trans configuration (86-98%) and unsaturated fatty acids and esters (69-96%). Good aldehyde yields are obtained in reactions of trisubstituted and terminal alkenes (62-63%). The products can be easily isolated by a simple extraction step with an organic solvent. The presented protocol involves a lower catalyst loading than conventional methods based on Ru or Os. Also, hydrogen peroxide can be used as the oxidant in this case, which is often disproportionated by second- and third-row metals. By using only mild oxidants, overoxidation of the aldehyde to the carboxylic acid is prevented.


Asunto(s)
Aldehídos/química , Aldehídos/síntesis química , Ácidos Grasos Insaturados/química , Peróxido de Hidrógeno/química , Hierro/química , Ácido Peryódico/química , Catálisis , Estructura Molecular , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA