Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 116(51): 25659-25667, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31776263

RESUMEN

Protein multivalency can provide increased affinity and specificity relative to monovalent counterparts, but these emergent biochemical properties and their mechanistic underpinnings are difficult to predict as a function of the biophysical properties of the multivalent binding partners. Here, we present a mathematical model that accurately simulates binding kinetics and equilibria of multivalent protein-protein interactions as a function of the kinetics of monomer-monomer binding, the structure and topology of the multidomain interacting partners, and the valency of each partner. These properties are all experimentally or computationally estimated a priori, including approximating topology with a worm-like chain model applicable to a variety of structurally disparate systems, thus making the model predictive without parameter fitting. We conceptualize multivalent binding as a protein-protein interaction network: ligand and receptor valencies determine the number of interacting species in the network, with monomer kinetics and structural properties dictating the dynamics of each species. As predicted by the model and validated by surface plasmon resonance experiments, multivalent interactions can generate several noncanonical macroscopic binding dynamics, including a transient burst of high-energy configurations during association, biphasic equilibria resulting from interligand competition at high concentrations, and multiexponential dissociation arising from differential lifetimes of distinct network species. The transient burst was only uncovered when extending our analysis to trivalent interactions due to the significantly larger network, and we were able to predictably tune burst magnitude by altering linker rigidity. This study elucidates mechanisms of multivalent binding and establishes a framework for model-guided analysis and engineering of such interactions.


Asunto(s)
Modelos Moleculares , Unión Proteica/fisiología , Mapas de Interacción de Proteínas/fisiología , Biología Computacional , Simulación por Computador , Cinética , Resonancia por Plasmón de Superficie
2.
Sci Rep ; 13(1): 4976, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973313

RESUMEN

Manipulation of intake of serotonin precursor tryptophan has been exploited to rapidly induce and alleviate depression symptoms. While studies show that this latter effect is dependent on genetic vulnerability to depression, the effect of habitual tryptophan intake in the context of predisposing genetic factors has not been explored. Our aim was to investigate the effect of habitual tryptophan intake on mood symptoms and to determine the effect of risk variants on depression in those with high and low tryptophan intake in the whole genome and specifically in serotonin and kynurenine pathways. 63,277 individuals in the UK Biobank with data on depressive symptoms and tryptophan intake were included. We compared two subpopulations defined by their habitual diet of a low versus a high ratio of tryptophan to other large amino acids (TLR). A modest protective effect of high dietary TLR against depression was found. NPBWR1 among serotonin genes and POLI in kynurenine pathway genes were significantly associated with depression in the low but not in the high TLR group. Pathway-level analyses identified significant associations for both serotonin and kynurenine pathways only in the low TLR group. In addition, significant association was found in the low TLR group between depressive symptoms and biological process related to adult neurogenesis. Our findings demonstrate a markedly distinct genetic risk profile for depression in groups with low and high dietary TLR, with association with serotonin and kynurenine pathway variants only in case of habitual food intake leading to low TLR. Our results confirm the relevance of the serotonin hypothesis in understanding the neurobiological background of depression and highlight the importance of understanding its differential role in the context of environmental variables such as complexity of diet in influencing mental health, pointing towards emerging possibilities of personalised prevention and intervention in mood disorders in those who are genetically vulnerable.


Asunto(s)
Aminoácidos Neutros , Triptófano , Adulto , Humanos , Triptófano/metabolismo , Quinurenina/metabolismo , Depresión/genética , Serotonina , Dieta
3.
Nat Commun ; 13(1): 5029, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068204

RESUMEN

Arising through multiple binding elements, multivalency can specify the avidity, duration, cooperativity, and selectivity of biomolecular interactions, but quantitative prediction and design of these properties has remained challenging. Here we present MVsim, an application suite built around a configurational network model of multivalency to facilitate the quantification, design, and mechanistic evaluation of multivalent binding phenomena through a simple graphical user interface. To demonstrate the utility and versatility of MVsim, we first show that both monospecific and multispecific multivalent ligand-receptor interactions, with their noncanonical binding kinetics, can be accurately simulated. Further, to illustrate the conceptual insights into multivalent systems that MVsim can provide, we apply it to quantitatively predict the ultrasensitivity and performance of multivalent-encoded protein logic gates, evaluate the inherent programmability of multispecificity for selective receptor targeting, and extract rate constants of conformational switching for the SARS-CoV-2 spike protein and model its binding to ACE2 as well as multivalent inhibitors of this interaction. MVsim and instructional tutorials are freely available at https://sarkarlab.github.io/MVsim/ .


Asunto(s)
COVID-19 , Humanos , Ligandos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
4.
Brain Behav ; 12(1): e2430, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34843176

RESUMEN

INTRODUCTION: Educational attainment is a substantially heritable trait, and it has recently been linked to specific genetic variants by genome-wide association studies (GWASs). However, the effects of such genetic variants are expected to vary across environments, including countries and historical eras. METHODS: We used polygenic scores (PGSs) to assess molecular genetic effects on educational attainment in Hungary, a country in the Central Eastern European region where behavioral genetic studies are in general scarce and molecular genetic studies of educational attainment have not been previously published. RESULTS: We found that the PGS is significantly associated with the attainment of a college degree as well as the number of years in education in a sample of Hungarian study participants (N = 829). PGS effect sizes were not significantly different when compared to an English (N = 976) comparison sample with identical measurement protocols. In line with previous Estonian findings, we found higher PGS effect sizes in Hungarian, but not in English participants who attended higher education after the fall of Communism, although we lacked statistical power for this effect to reach significance. DISCUSSION: Our results provide evidence that polygenic scores for educational attainment have predictive value in culturally diverse European populations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Escolaridad , Hungría
5.
bioRxiv ; 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34373856

RESUMEN

Arising through multiple binding elements, multivalency can specify the avidity, duration, cooperativity, and selectivity of biomolecular interactions, but quantitative prediction and design of these properties has remained challenging. Here we present MVsim , an application suite built around a configurational network model of multivalency to facilitate the quantification, design, and mechanistic evaluation of multivalent binding phenomena through a simple graphical user interface. To demonstrate the utility and versatility of MVsim , we first show that both monospecific and multispecific multivalent ligand-receptor interactions, with their noncanonical binding kinetics, can be accurately simulated. We then quantitatively predict the ultrasensitivity and performance of multivalent-encoded protein logic gates, evaluate the inherent programmability of multispecificity for selective receptor targeting, and extract rate constants of conformational switching for the SARS-CoV-2 spike protein and model its binding to ACE2 as well as multivalent inhibitors of this interaction. MVsim is freely available at https://sarkarlab.github.io/MVsim/ .

6.
Nutrients ; 13(12)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34959947

RESUMEN

Past-oriented rumination and future-oriented worry are two aspects of perseverative negative thinking related to the neuroticism endophenotype and associated with depression and anxiety. Our present aim was to investigate the genomic background of these two aspects of perseverative negative thinking within separate groups of individuals with suboptimal versus optimal folate intake. We conducted a genome-wide association study in the UK Biobank database (n = 72,621) on the "rumination" and "worry" items of the Eysenck Personality Inventory Neuroticism scale in these separate groups. Optimal folate intake was related to lower worry, but unrelated to rumination. In contrast, genetic associations for worry did not implicate specific biological processes, while past-oriented rumination had a more specific genetic background, emphasizing its endophenotypic nature. Furthermore, biological pathways leading to rumination appeared to differ according to folate intake: purinergic signaling and circadian regulator gene ARNTL emerged in the whole sample, blastocyst development, DNA replication, and C-C chemokines in the suboptimal folate group, and prostaglandin response and K+ channel subunit gene KCNH3 in the optimal folate group. Our results point to possible benefits of folate in anxiety disorders, and to the importance of simultaneously taking into account genetic and environmental factors to determine personalized intervention in polygenic and multifactorial disorders.


Asunto(s)
Ansiedad/dietoterapia , Suplementos Dietéticos , Ingestión de Alimentos/fisiología , Ácido Fólico/administración & dosificación , Fenómenos Fisiológicos de la Nutrición/genética , Pesimismo/psicología , Factores de Transcripción ARNTL , Adolescente , Adulto , Anciano , Ansiedad/etiología , Ansiedad/genética , Depresión/etiología , Canales de Potasio Éter-A-Go-Go , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso , Neuroticismo , Rumiación Cognitiva , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA