RESUMEN
Site-specific protein modifications are vital for biopharmaceutical drug development. Gluconoylation is a non-enzymatic, post-translational modification of N-terminal HisTags. We report high-yield, site-selective inâ vitro α-aminoacylation of peptides, glycoproteins, antibodies, and virus-like particles (VLPs) with azidogluconolactone at pHâ 7.5 in 1â h. Conjugates slowly hydrolyse, but diol-masking with borate esters inhibits reversibility. In an example, we multimerise azidogluconoylated SARS-CoV-2 receptor-binding domain (RBD) onto VLPs via click-chemistry, to give a COVID-19 vaccine. Compared to yeast antigen, HEK-derived RBD was immunologically superior, likely due to observed differences in glycosylation. We show the benefits of ordered over randomly oriented multimeric antigen display, by demonstrating single-shot seroconversion and best virus-neutralizing antibodies. Azidogluconoylation is simple, fast and robust chemistry, and should accelerate research and development.
Asunto(s)
Azidas/química , Vacunas contra la COVID-19/química , Gluconatos/química , Glicina/química , Histidina/química , Lactonas/química , Vacunas de Partículas Similares a Virus/química , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Azidas/inmunología , Vacunas contra la COVID-19/inmunología , Gluconatos/inmunología , Glicina/inmunología , Histidina/inmunología , Humanos , Lactonas/inmunología , Modelos Moleculares , Estructura Molecular , Vacunas de Partículas Similares a Virus/inmunologíaRESUMEN
Engineering modular platforms to control biomolecular architecture can advance both the understanding and the manipulation of biological systems. Icosahedral particles uniformly displaying single antigens stimulate potent immune activation and have been successful in various licensed vaccines. However, it remains challenging to display multiple antigens on a single particle and to induce broader immunity protective across strains or even against distinct diseases. Here, we design a dually addressable synthetic nanoparticle by engineering the multimerizing coiled-coil IMX313 and two orthogonally reactive split proteins. SpyCatcher protein forms an isopeptide bond with SpyTag peptide through spontaneous amidation. SnoopCatcher forms an isopeptide bond with SnoopTag peptide through transamidation. SpyCatcher-IMX-SnoopCatcher provides a modular platform, whereby SpyTag-antigen and SnoopTag-antigen can be multimerized on opposite faces of the particle simply upon mixing. We demonstrate efficient derivatization of the platform with model proteins and complex pathogen-derived antigens. SpyCatcher-IMX-SnoopCatcher was expressed in Escherichia coli and was resilient to lyophilization or extreme temperatures. For the next generation of malaria vaccines, blocking the transmission of the parasite from human to mosquito is an important goal. SpyCatcher-IMX-SnoopCatcher multimerization of the leading transmission-blocking antigens Pfs25 and Pfs28 greatly enhanced the antibody response to both antigens in comparison to the monomeric proteins. This dual plug-and-display architecture should help to accelerate vaccine development for malaria and other diseases.
Asunto(s)
Proteína de Unión al Complemento C4b/inmunología , Proteínas de Escherichia coli/inmunología , Proteínas Protozoarias/inmunología , Animales , Proteína de Unión al Complemento C4b/química , Proteínas de Escherichia coli/química , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/química , Vacunación , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunologíaRESUMEN
Vaccines based on virus-like particles (VLPs) can induce potent B cell responses. Some non-chimeric VLP-based vaccines are highly successful licensed products (e.g., hepatitis B surface antigen VLPs as a hepatitis B virus vaccine). Chimeric VLPs are designed to take advantage of the VLP framework by decorating the VLP with a different antigen. Despite decades of effort, there have been few licensed chimeric VLP vaccines. Classic approaches to create chimeric VLPs are either genetic fusion or chemical conjugation, using cross-linkers from lysine on the VLP to cysteine on the antigen. We describe the principles that make these classic approaches challenging, in particular for complex, full-length antigens bearing multiple post-translational modifications. We then review recent advances in conjugation approaches for protein-based non-enveloped VLPs or nanoparticles, to overcome such challenges. This includes the use of strong non-covalent assembly methods (stick), unnatural amino acids for bio-orthogonal chemistry (click), and spontaneous isopeptide bond formation by SpyTag/SpyCatcher (glue). Existing applications of these methods are outlined and we critically consider the key practical issues, with particular insight on Tag/Catcher plug-and-display decoration. Finally, we highlight the potential for modular particle decoration to accelerate vaccine generation and prepare for pandemic threats in human and veterinary realms.
RESUMEN
Vaccine development efforts have recently focused on enabling strong immune responses to poorly immunogenic antigens, via display on multimerisation scaffolds or virus like particles (VLPs). Typically such studies demonstrate improved antibody titer comparing monomeric and nano-arrayed antigen. There are many such studies and scaffold technologies, but minimal side-by-side evaluation of platforms for both the amount and efficacy of antibodies induced. Here we present direct comparison of three leading platforms displaying the promising malaria transmission-blocking vaccine (TBV) target Pfs25. These platforms encompass the three important routes to antigen-scaffold linkage: genetic fusion, chemical cross-linking and plug-and-display SpyTag/SpyCatcher conjugation. We demonstrate that chemically-conjugated Qß VLPs elicited the highest quantity of antibodies, while SpyCatcher-AP205-VLPs elicited the highest quality anti-Pfs25 antibodies for transmission blocking upon mosquito feeding. These quantative and qualitative features will guide future nanoassembly optimisation, as well as the development of the new generation of malaria vaccines targeting transmission.
Asunto(s)
Anticuerpos Bloqueadores/inmunología , Anticuerpos Antiprotozoarios/inmunología , Vacunas contra la Malaria/inmunología , Nanopartículas , Proteínas Protozoarias/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Animales , Femenino , Vacunas contra la Malaria/farmacología , Ratones , Ratones Endogámicos BALB C , Proteínas Protozoarias/farmacología , Vacunas de Partículas Similares a Virus/farmacologíaRESUMEN
Virus-like particles (VLPs) are non-infectious self-assembling nanoparticles, useful in medicine and nanotechnology. Their repetitive molecularly-defined architecture is attractive for engineering multivalency, notably for vaccination. However, decorating VLPs with target-antigens by genetic fusion or chemical modification is time-consuming and often leads to capsid misassembly or antigen misfolding, hindering generation of protective immunity. Here we establish a platform for irreversibly decorating VLPs simply by mixing with protein antigen. SpyCatcher is a genetically-encoded protein designed to spontaneously form a covalent bond to its peptide-partner SpyTag. We expressed in E. coli VLPs from the bacteriophage AP205 genetically fused to SpyCatcher. We demonstrated quantitative covalent coupling to SpyCatcher-VLPs after mixing with SpyTag-linked to malaria antigens, including CIDR and Pfs25. In addition, we showed coupling to the VLPs for peptides relevant to cancer from epidermal growth factor receptor and telomerase. Injecting SpyCatcher-VLPs decorated with a malarial antigen efficiently induced antibody responses after only a single immunization. This simple, efficient and modular decoration of nanoparticles should accelerate vaccine development, as well as other applications of nanoparticle devices.
Asunto(s)
Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Péptidos/inmunología , Vacunas de Partículas Similares a Virus/inmunología , Antígenos Virales/genética , Bacteriófagos/genética , Bacteriófagos/inmunología , Cápside/inmunología , Proteínas de la Cápside/genética , Escherichia coli/genética , Humanos , Péptidos/genética , Vacunación , Vacunas de Partículas Similares a Virus/genéticaRESUMEN
In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory, and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical, and energy applications, and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.