Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 617(7960): 351-359, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37076628

RESUMEN

Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representations1,2, despite evidence for concentric functional zones3 and maps of complex actions4. Here, using precision functional magnetic resonance imaging (fMRI) methods, we find that the classic homunculus is interrupted by regions with distinct connectivity, structure and function, alternating with effector-specific (foot, hand and mouth) areas. These inter-effector regions exhibit decreased cortical thickness and strong functional connectivity to each other, as well as to the cingulo-opercular network (CON), critical for action5 and physiological control6, arousal7, errors8 and pain9. This interdigitation of action control-linked and motor effector regions was verified in the three largest fMRI datasets. Macaque and pediatric (newborn, infant and child) precision fMRI suggested cross-species homologues and developmental precursors of the inter-effector system. A battery of motor and action fMRI tasks documented concentric effector somatotopies, separated by the CON-linked inter-effector regions. The inter-effectors lacked movement specificity and co-activated during action planning (coordination of hands and feet) and axial body movement (such as of the abdomen or eyebrows). These results, together with previous studies demonstrating stimulation-evoked complex actions4 and connectivity to internal organs10 such as the adrenal medulla, suggest that M1 is punctuated by a system for whole-body action planning, the somato-cognitive action network (SCAN). In M1, two parallel systems intertwine, forming an integrate-isolate pattern: effector-specific regions (foot, hand and mouth) for isolating fine motor control and the SCAN for integrating goals, physiology and body movement.


Asunto(s)
Mapeo Encefálico , Cognición , Corteza Motora , Mapeo Encefálico/métodos , Mano/fisiología , Imagen por Resonancia Magnética , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Humanos , Recién Nacido , Lactante , Niño , Animales , Macaca/anatomía & histología , Macaca/fisiología , Pie/fisiología , Boca/fisiología , Conjuntos de Datos como Asunto
2.
PLoS Biol ; 21(8): e3002176, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37582062

RESUMEN

Music is core to human experience, yet the precise neural dynamics underlying music perception remain unknown. We analyzed a unique intracranial electroencephalography (iEEG) dataset of 29 patients who listened to a Pink Floyd song and applied a stimulus reconstruction approach previously used in the speech domain. We successfully reconstructed a recognizable song from direct neural recordings and quantified the impact of different factors on decoding accuracy. Combining encoding and decoding analyses, we found a right-hemisphere dominance for music perception with a primary role of the superior temporal gyrus (STG), evidenced a new STG subregion tuned to musical rhythm, and defined an anterior-posterior STG organization exhibiting sustained and onset responses to musical elements. Our findings show the feasibility of applying predictive modeling on short datasets acquired in single patients, paving the way for adding musical elements to brain-computer interface (BCI) applications.


Asunto(s)
Corteza Auditiva , Música , Humanos , Corteza Auditiva/fisiología , Mapeo Encefálico , Percepción Auditiva/fisiología , Lóbulo Temporal/fisiología , Estimulación Acústica
3.
Cereb Cortex ; 33(14): 8837-8848, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37280730

RESUMEN

Context modulates sensory neural activations enhancing perceptual and behavioral performance and reducing prediction errors. However, the mechanism of when and where these high-level expectations act on sensory processing is unclear. Here, we isolate the effect of expectation absent of any auditory evoked activity by assessing the response to omitted expected sounds. Electrocorticographic signals were recorded directly from subdural electrode grids placed over the superior temporal gyrus (STG). Subjects listened to a predictable sequence of syllables, with some infrequently omitted. We found high-frequency band activity (HFA, 70-170 Hz) in response to omissions, which overlapped with a posterior subset of auditory-active electrodes in STG. Heard syllables could be distinguishable reliably from STG, but not the identity of the omitted stimulus. Both omission- and target-detection responses were also observed in the prefrontal cortex. We propose that the posterior STG is central for implementing predictions in the auditory environment. HFA omission responses in this region appear to index mismatch-signaling or salience detection processes.


Asunto(s)
Corteza Auditiva , Humanos , Corteza Auditiva/fisiología , Área de Wernicke , Estimulación Acústica , Potenciales Evocados Auditivos/fisiología , Mapeo Encefálico , Percepción Auditiva/fisiología
4.
J Neurophysiol ; 130(3): 628-639, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584101

RESUMEN

Electrical activity at high gamma frequencies (70-170 Hz) is thought to reflect the activity of small cortical ensembles. For example, high gamma activity (often quantified by spectral power) can increase in sensory-motor cortex in response to sensory stimuli or movement. On the other hand, synchrony of neural activity between cortical areas (often quantified by coherence) has been hypothesized as an important mechanism for inter-areal communication, thereby serving functional roles in cognition and behavior. Currently, high gamma activity has primarily been studied as a local amplitude phenomenon. We investigated the synchronization of high gamma activity within sensory-motor cortex and the extent to which underlying high gamma activity can explain coherence during motor tasks. We characterized high gamma coherence in sensory-motor networks and the relationship between coherence and power by analyzing electrocorticography (ECoG) data from human subjects as they performed a motor response to sensory cues. We found greatly increased high gamma coherence during the motor response compared with the sensory cue. High gamma power poorly predicted high gamma coherence, but the two shared a similar time course. However, high gamma coherence persisted longer than high gamma power. The results of this study suggest that high gamma coherence is a physiologically distinct phenomenon during a sensory-motor task, the emergence of which may require active task participation.NEW & NOTEWORTHY Motor action after auditory stimulus elicits high gamma responses in sensory-motor and auditory cortex, respectively. We show that high gamma coherence reliably and greatly increased during motor response, but not after auditory stimulus. Underlying high gamma power could not explain high gamma coherence. Our results indicate that high gamma coherence is a physiologically distinct sensory-motor phenomenon that may serve as an indicator of increased synaptic communication on short timescales (∼1 s).


Asunto(s)
Electroencefalografía , Corteza Sensoriomotora , Humanos , Electrocorticografía , Movimiento/fisiología , Cognición
5.
Neuroimage ; 243: 118498, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34428572

RESUMEN

Despite significant interest in the neural underpinnings of behavioral variability, little light has been shed on the cortical mechanism underlying the failure to respond to perceptual-level stimuli. We hypothesized that cortical activity resulting from perceptual-level stimuli is sensitive to the moment-to-moment fluctuations in cortical excitability, and thus may not suffice to produce a behavioral response. We tested this hypothesis using electrocorticographic recordings to follow the propagation of cortical activity in six human subjects that responded to perceptual-level auditory stimuli. Here we show that for presentations that did not result in a behavioral response, the likelihood of cortical activity decreased from auditory cortex to motor cortex, and was related to reduced local cortical excitability. Cortical excitability was quantified using instantaneous voltage during a short window prior to cortical activity onset. Therefore, when humans are presented with an auditory stimulus close to perceptual-level threshold, moment-by-moment fluctuations in cortical excitability determine whether cortical responses to sensory stimulation successfully connect auditory input to a resultant behavioral response.


Asunto(s)
Excitabilidad Cortical/fisiología , Estimulación Acústica , Adulto , Anciano , Ritmo alfa/fisiología , Corteza Auditiva/fisiología , Mapeo Encefálico/métodos , Electrocorticografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
Neuroimage ; 237: 118127, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33957232

RESUMEN

Variations in reaction time are a ubiquitous characteristic of human behavior. Extensively documented, they have been successfully modeled using parameters of the subject or the task, but the neural basis of behavioral reaction time that varies within the same subject and the same task has been minimally studied. In this paper, we investigate behavioral reaction time variance using 28 datasets of direct cortical recordings in humans who engaged in four different types of simple sensory-motor reaction time tasks. Using a previously described technique that can identify the onset of population-level cortical activity and a novel functional connectivity algorithm described herein, we show that the cumulative latency difference of population-level neural activity across the task-related cortical network can explain up to 41% of the trial-by-trial variance in reaction time. Furthermore, we show that reaction time variance may primarily be due to the latencies in specific brain regions and demonstrate that behavioral latency variance is accumulated across the whole task-related cortical network. Our results suggest that population-level neural activity monotonically increases prior to movement execution, and that trial-by-trial changes in that increase are, in part, accounted for by inhibitory activity indexed by low-frequency oscillations. This pre-movement neural activity explains 19% of the measured variance in neural latencies in our data. Thus, our study provides a mechanistic explanation for a sizable fraction of behavioral reaction time when the subject's task is the same from trial to trial.


Asunto(s)
Corteza Cerebral/fisiología , Conectoma , Ritmo Gamma/fisiología , Red Nerviosa/fisiología , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Adulto , Algoritmos , Ritmo alfa/fisiología , Electrocorticografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
7.
J Neurooncol ; 148(3): 587-598, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32524393

RESUMEN

INTRODUCTION: 20.8% of the United States population and 67% of the European population speak two or more languages. Intraoperative different languages, mapping, and localization are crucial. This investigation aims to address three questions between BL and ML patients: (1) Are there differences in complications (i.e. seizures) and DECS techniques during intra-operative brain mapping? (2) Is EOR different? and (3) Are there differences in the recovery pattern post-surgery? METHODS: Data from 56 patients that underwent left-sided awake craniotomy for tumors infiltrating possible dominant hemisphere language areas from September 2016 to June 2019 were identified and analyzed in this study; 14 BL and 42 ML control patients. Patient demographics, education level, and the age of language acquisition were documented and evaluated. fMRI was performed on all participants. RESULTS: 0 (0%) BL and 3 (7%) ML experienced intraoperative seizures (P = 0.73). BL patients received a higher direct DECS current in comparison to the ML patients (average = 4.7, 3.8, respectively, P = 0.03). The extent of resection was higher in ML patients in comparison to the BL patients (80.9 vs. 64.8, respectively, P = 0.04). The post-operative KPS scores were higher in BL patients in comparison to ML patients (84.3, 77.4, respectively, P = 0.03). BL showed lower drop in post-operative KPS in comparison to ML patients (- 4.3, - 8.7, respectively, P = 0.03). CONCLUSION: We show that BL patients have a lower incidence of intra-operative seizures, lower EOR, higher post-operative KPS and tolerate higher DECS current, in comparison to ML patients.


Asunto(s)
Neoplasias Encefálicas/cirugía , Craneotomía/métodos , Glioma/cirugía , Lenguaje , Convulsiones/epidemiología , Vigilia , Mapeo Encefálico/métodos , Neoplasias Encefálicas/patología , Femenino , Estudios de Seguimiento , Glioma/patología , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Monitoreo Intraoperatorio/métodos , Pronóstico , Estudios Retrospectivos , Estados Unidos/epidemiología
8.
Proc Natl Acad Sci U S A ; 114(23): E4530-E4538, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533406

RESUMEN

Word retrieval is core to language production and relies on complementary processes: the rapid activation of lexical and conceptual representations and word selection, which chooses the correct word among semantically related competitors. Lexical and conceptual activation is measured by semantic priming. In contrast, word selection is indexed by semantic interference and is hampered in semantically homogeneous (HOM) contexts. We examined the spatiotemporal dynamics of these complementary processes in a picture naming task with blocks of semantically heterogeneous (HET) or HOM stimuli. We used electrocorticography data obtained from frontal and temporal cortices, permitting detailed spatiotemporal analysis of word retrieval processes. A semantic interference effect was observed with naming latencies longer in HOM versus HET blocks. Cortical response strength as indexed by high-frequency band (HFB) activity (70-150 Hz) amplitude revealed effects linked to lexical-semantic activation and word selection observed in widespread regions of the cortical mantle. Depending on the subsecond timing and cortical region, HFB indexed semantic interference (i.e., more activity in HOM than HET blocks) or semantic priming effects (i.e., more activity in HET than HOM blocks). These effects overlapped in time and space in the left posterior inferior temporal gyrus and the left prefrontal cortex. The data do not support a modular view of word retrieval in speech production but rather support substantial overlap of lexical-semantic activation and word selection mechanisms in the brain.


Asunto(s)
Lóbulo Frontal/fisiología , Habla/fisiología , Adulto , Electrocorticografía , Fenómenos Electrofisiológicos , Femenino , Humanos , Lenguaje , Masculino , Estimulación Luminosa , Semántica , Medición de la Producción del Habla , Lóbulo Temporal/fisiología , Adulto Joven
9.
Proc Natl Acad Sci U S A ; 113(41): E6256-E6262, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27671642

RESUMEN

The neural processes that underlie your ability to read and understand this sentence are unknown. Sentence comprehension occurs very rapidly, and can only be understood at a mechanistic level by discovering the precise sequence of underlying computational and neural events. However, we have no continuous and online neural measure of sentence processing with high spatial and temporal resolution. Here we report just such a measure: intracranial recordings from the surface of the human brain show that neural activity, indexed by γ-power, increases monotonically over the course of a sentence as people read it. This steady increase in activity is absent when people read and remember nonword-lists, despite the higher cognitive demand entailed, ruling out accounts in terms of generic attention, working memory, and cognitive load. Response increases are lower for sentence structure without meaning ("Jabberwocky" sentences) and word meaning without sentence structure (word-lists), showing that this effect is not explained by responses to syntax or word meaning alone. Instead, the full effect is found only for sentences, implicating compositional processes of sentence understanding, a striking and unique feature of human language not shared with animal communication systems. This work opens up new avenues for investigating the sequence of neural events that underlie the construction of linguistic meaning.


Asunto(s)
Encéfalo/fisiología , Semántica , Adolescente , Adulto , Corteza Cerebral/fisiología , Electrodos , Femenino , Humanos , Adulto Joven
10.
Neuroimage ; 97: 188-95, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24768933

RESUMEN

Neuroimaging approaches have implicated multiple brain sites in musical perception, including the posterior part of the superior temporal gyrus and adjacent perisylvian areas. However, the detailed spatial and temporal relationship of neural signals that support auditory processing is largely unknown. In this study, we applied a novel inter-subject analysis approach to electrophysiological signals recorded from the surface of the brain (electrocorticography (ECoG)) in ten human subjects. This approach allowed us to reliably identify those ECoG features that were related to the processing of a complex auditory stimulus (i.e., continuous piece of music) and to investigate their spatial, temporal, and causal relationships. Our results identified stimulus-related modulations in the alpha (8-12 Hz) and high gamma (70-110 Hz) bands at neuroanatomical locations implicated in auditory processing. Specifically, we identified stimulus-related ECoG modulations in the alpha band in areas adjacent to primary auditory cortex, which are known to receive afferent auditory projections from the thalamus (80 of a total of 15,107 tested sites). In contrast, we identified stimulus-related ECoG modulations in the high gamma band not only in areas close to primary auditory cortex but also in other perisylvian areas known to be involved in higher-order auditory processing, and in superior premotor cortex (412/15,107 sites). Across all implicated areas, modulations in the high gamma band preceded those in the alpha band by 280 ms, and activity in the high gamma band causally predicted alpha activity, but not vice versa (Granger causality, p<1e(-8)). Additionally, detailed analyses using Granger causality identified causal relationships of high gamma activity between distinct locations in early auditory pathways within superior temporal gyrus (STG) and posterior STG, between posterior STG and inferior frontal cortex, and between STG and premotor cortex. Evidence suggests that these relationships reflect direct cortico-cortical connections rather than common driving input from subcortical structures such as the thalamus. In summary, our inter-subject analyses defined the spatial and temporal relationships between music-related brain activity in the alpha and high gamma bands. They provide experimental evidence supporting current theories about the putative mechanisms of alpha and gamma activity, i.e., reflections of thalamo-cortical interactions and local cortical neural activity, respectively, and the results are also in agreement with existing functional models of auditory processing.


Asunto(s)
Ritmo alfa/fisiología , Percepción Auditiva/fisiología , Electroencefalografía/métodos , Ritmo Gamma/fisiología , Estimulación Acústica , Adolescente , Adulto , Mapeo Encefálico , Causalidad , Epilepsia/psicología , Femenino , Humanos , Individualidad , Masculino , Persona de Mediana Edad , Música/psicología , Adulto Joven
11.
Epilepsy Behav ; 41: 183-92, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25461213

RESUMEN

The Fifth International Workshop on Advances in Electrocorticography convened in San Diego, CA, on November 7-8, 2013. Advancements in methodology, implementation, and commercialization across both research and in the interval year since the last workshop were the focus of the gathering. Electrocorticography (ECoG) is now firmly established as a preferred signal source for advanced research in functional, cognitive, and neuroprosthetic domains. Published output in ECoG fields has increased tenfold in the past decade. These proceedings attempt to summarize the state of the art.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral , Congresos como Asunto , Electroencefalografía/métodos , Corteza Cerebral/fisiología , Corteza Cerebral/fisiopatología , Electroencefalografía/instrumentación , Humanos
12.
bioRxiv ; 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38562725

RESUMEN

Detecting temporal and spectral features of neural oscillations is essential to understanding dynamic brain function. Traditionally, the presence and frequency of neural oscillations are determined by identifying peaks over 1/f noise within the power spectrum. However, this approach solely operates within the frequency domain and thus cannot adequately distinguish between the fundamental frequency of a non-sinusoidal oscillation and its harmonics. Non-sinusoidal signals generate harmonics, significantly increasing the false-positive detection rate - a confounding factor in the analysis of neural oscillations. To overcome these limitations, we define the fundamental criteria that characterize a neural oscillation and introduce the Cyclic Homogeneous Oscillation (CHO) detection method that implements these criteria based on an auto-correlation approach that determines the oscillation's periodicity and fundamental frequency. We evaluated CHO by verifying its performance on simulated sinusoidal and non-sinusoidal oscillatory bursts convolved with 1/f noise. Our results demonstrate that CHO outperforms conventional techniques in accurately detecting oscillations. Specifically, we determined the sensitivity and specificity of CHO as a function of signal-to-noise ratio (SNR). We further assessed CHO by testing it on electrocorticographic (ECoG, 8 subjects) and electroencephalographic (EEG, 7 subjects) signals recorded during the pre-stimulus period of an auditory reaction time task and on electrocorticographic signals (6 SEEG subjects and 6 ECoG subjects) collected during resting state. In the reaction time task, the CHO method detected auditory alpha and pre-motor beta oscillations in ECoG signals and occipital alpha and pre-motor beta oscillations in EEG signals. Moreover, CHO determined the fundamental frequency of hippocampal oscillations in the human hippocampus during the resting state (6 SEEG subjects). In summary, CHO demonstrates high precision and specificity in detecting neural oscillations in time and frequency domains. The method's specificity enables the detailed study of non-sinusoidal characteristics of oscillations, such as the degree of asymmetry and waveform of an oscillation. Furthermore, CHO can be applied to identify how neural oscillations govern interactions throughout the brain and to determine oscillatory biomarkers that index abnormal brain function.

13.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915599

RESUMEN

Introduction: Stereoelectroencephalography (sEEG) is a mesoscale intracranial monitoring method which records from the brain volumetrically with depth electrodes. Implementation of sEEG in BCI has not been well-described across a diverse patient cohort. Methods: Across eighteen subjects, channels with high frequency broadband (HFB, 65-115Hz) power increases during hand, tongue, or foot movements during a motor screening task were provided real-time feedback based on these HFB power changes to control a cursor on a screen. Results: Seventeen subjects established successful control of the overt motor BCI, but only nine were able to control imagery BCI with ≥ 80% accuracy. In successful imagery BCI, HFB power in the two target conditions separated into distinct subpopulations, which appear to engage unique subnetworks of the motor cortex compared to cued movement or imagery alone. Conclusion: sEEG-based motor BCI utilizing overt movement and kinesthetic imagery is robust across patient ages and cortical regions with substantial differences in learning proficiency between real or imagined movement.

14.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585960

RESUMEN

Background: Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular VNS (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. Objective: We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. Method: This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). Results: In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d ' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d ' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. Conclusion: Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory. Highlights: Vibrotactile stimulation of the auricular vagus nerve increases general arousal.Vibrotactile stimulation of the auricular vagus nerve mitigates arousal decreases as subjects continuously perform working memory tasks.6 Hz Vibrotactile auricular vagus nerve stimulation is a potential intervention for enhancing working memory performance.

15.
Brain Stimul ; 17(2): 460-468, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38593972

RESUMEN

BACKGROUND: Working memory is essential to a wide range of cognitive functions and activities. Transcutaneous auricular vagus nerve stimulation (taVNS) is a promising method to improve working memory performance. However, the feasibility and scalability of electrical stimulation are constrained by several limitations, such as auricular discomfort and inconsistent electrical contact. OBJECTIVE: We aimed to develop a novel and practical method, vibrotactile taVNS, to improve working memory. Further, we investigated its effects on arousal, measured by skin conductance and pupil diameter. METHOD: This study included 20 healthy participants. Behavioral response, skin conductance, and eye tracking data were concurrently recorded while the participants performed N-back tasks under three conditions: vibrotactile taVNS delivered to the cymba concha, earlobe (sham control), and no stimulation (baseline control). RESULTS: In 4-back tasks, which demand maximal working memory capacity, active vibrotactile taVNS significantly improved the performance metric d' compared to the baseline but not to the sham. Moreover, we found that the reduction rate of d' with increasing task difficulty was significantly smaller during vibrotactile taVNS sessions than in both baseline and sham conditions. Arousal, measured as skin conductance and pupil diameter, declined over the course of the tasks. Vibrotactile taVNS rescued this arousal decline, leading to arousal levels corresponding to optimal working memory levels. Moreover, pupil diameter and skin conductance level were higher during high-cognitive-load tasks when vibrotactile taVNS was delivered to the concha compared to baseline and sham. CONCLUSION: Our findings suggest that vibrotactile taVNS modulates the arousal pathway and could be a potential intervention for enhancing working memory.


Asunto(s)
Memoria a Corto Plazo , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Estimulación del Nervio Vago/métodos , Vibración , Pupila/fisiología , Respuesta Galvánica de la Piel/fisiología , Nervio Vago/fisiología
16.
Nat Commun ; 15(1): 4308, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773117

RESUMEN

Decision-makers objectively commit to a definitive choice, yet at the subjective level, human decisions appear to be associated with a degree of uncertainty. Whether decisions are definitive (i.e., concluding in all-or-none choices), or whether the underlying representations are graded, remains unclear. To answer this question, we recorded intracranial neural signals directly from the brain while human subjects made perceptual decisions. The recordings revealed that broadband gamma activity reflecting each individual's decision-making process, ramped up gradually while being graded by the accumulated decision evidence. Crucially, this grading effect persisted throughout the decision process without ever reaching a definite bound at the time of choice. This effect was most prominent in the parietal cortex, a brain region traditionally implicated in decision-making. These results provide neural evidence for a graded decision process in humans and an analog framework for flexible choice behavior.


Asunto(s)
Encéfalo , Toma de Decisiones , Lóbulo Parietal , Humanos , Toma de Decisiones/fisiología , Masculino , Femenino , Adulto , Encéfalo/fisiología , Lóbulo Parietal/fisiología , Conducta de Elección/fisiología , Adulto Joven , Incertidumbre
17.
Cell Rep ; 43(1): 113520, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38151023

RESUMEN

Recognizing familiar faces and learning new faces play an important role in social cognition. However, the underlying neural computational mechanisms remain unclear. Here, we record from single neurons in the human amygdala and hippocampus and find a greater neuronal representational distance between pairs of familiar faces than unfamiliar faces, suggesting that neural representations for familiar faces are more distinct. Representational distance increases with exposures to the same identity, suggesting that neural face representations are sharpened with learning and familiarization. Furthermore, representational distance is positively correlated with visual dissimilarity between faces, and exposure to visually similar faces increases representational distance, thus sharpening neural representations. Finally, we construct a computational model that demonstrates an increase in the representational distance of artificial units with training. Together, our results suggest that the neuronal population geometry, quantified by the representational distance, encodes face familiarity, similarity, and learning, forming the basis of face recognition and memory.


Asunto(s)
Reconocimiento Facial , Reconocimiento en Psicología , Humanos , Reconocimiento en Psicología/fisiología , Aprendizaje , Amígdala del Cerebelo , Reconocimiento Facial/fisiología , Hipocampo , Reconocimiento Visual de Modelos/fisiología
18.
Sci Rep ; 14(1): 3433, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341457

RESUMEN

Limitations in chronic pain therapies necessitate novel interventions that are effective, accessible, and safe. Brain-computer interfaces (BCIs) provide a promising modality for targeting neuropathology underlying chronic pain by converting recorded neural activity into perceivable outputs. Recent evidence suggests that increased frontal theta power (4-7 Hz) reflects pain relief from chronic and acute pain. Further studies have suggested that vibrotactile stimulation decreases pain intensity in experimental and clinical models. This longitudinal, non-randomized, open-label pilot study's objective was to reinforce frontal theta activity in six patients with chronic upper extremity pain using a novel vibrotactile neurofeedback BCI system. Patients increased their BCI performance, reflecting thought-driven control of neurofeedback, and showed a significant decrease in pain severity (1.29 ± 0.25 MAD, p = 0.03, q = 0.05) and pain interference (1.79 ± 1.10 MAD p = 0.03, q = 0.05) scores without any adverse events. Pain relief significantly correlated with frontal theta modulation. These findings highlight the potential of BCI-mediated cortico-sensory coupling of frontal theta with vibrotactile stimulation for alleviating chronic pain.


Asunto(s)
Interfaces Cerebro-Computador , Dolor Crónico , Neurorretroalimentación , Humanos , Dolor Crónico/terapia , Electroencefalografía , Proyectos Piloto , Estudios Longitudinales , Ensayos Clínicos Controlados no Aleatorios como Asunto
19.
medRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38562875

RESUMEN

Background: Inflammation has been implicated in driving the morbidity associated with subarachnoid hemorrhage (SAH). Despite understanding the important role of inflammation in morbidity following SAH, there is no current effective way to modulate this deleterious response. There is a critical need for a novel approach to immunomodulation that can be safely, rapidly, and effectively deployed in SAH patients. Vagus nerve stimulation (VNS) provides a non-pharmacologic approach to immunomodulation, with prior studies demonstrating VNS can reduce systemic inflammatory markers, and VNS has had early success treating inflammatory conditions such as arthritis, sepsis, and inflammatory bowel diseases. The aim of the Non-invasive Auricular Vagus nerve stimulation for Subarachnoid Hemorrhage (NAVSaH) trial is to translate the use of non-invasive transcutaneous auricular VNS (taVNS) to spontaneous SAH, with our central hypothesis being that implementing taVNS in the acute period following spontaneous SAH attenuates the expected inflammatory response to hemorrhage and curtails morbidity associated with inflammatory-mediated clinical endpoints. Materials and methods: The overall objectives for the NAHSaH trial are to 1) Define the impact that taVNS has on SAH-induced inflammatory markers in the plasma and cerebrospinal fluid (CSF), 2) Determine whether taVNS following SAH reduces radiographic vasospasm, and 3) Determine whether taVNS following SAH reduces chronic hydrocephalus. Following presentation to a single enrollment site, enrolled SAH patients are randomly assigned twice daily treatment with either taVNS or sham stimulation for the duration of their intensive care unit stay. Blood and CSF are drawn before initiation of treatment sessions, and then every three days during a patient's hospital stay. Primary endpoints include change in the inflammatory cytokine TNF-α in plasma and cerebrospinal fluid between day 1 and day 13, rate of radiographic vasospasm, and rate of requirement for long-term CSF diversion via a ventricular shunt. Secondary outcomes include exploratory analyses of a panel of additional cytokines, number and type of hospitalized acquired infections, duration of external ventricular drain in days, interventions required for vasospasm, continuous physiology data before, during, and after treatment sessions, hospital length of stay, intensive care unit length of stay, and modified Rankin Scale score (mRS) at admission, discharge, and each at follow-up appointment for up to two years following SAH. Discussion: Inflammation plays a central role in morbidity following SAH. This NAVSaH trial is innovative because it diverges from the pharmacologic status quo by harnessing a novel non-invasive neuromodulatory approach and its known anti-inflammatory effects to alter the pathophysiology of SAH. The investigation of a new, effective, and rapidly deployable intervention in SAH offers a new route to improve outcomes following SAH. Trial registration: Clinical Trials Registered, NCT04557618. Registered on September 21, 2020, and the first patient was enrolled on January 4, 2021.

20.
J Neurosci Methods ; 404: 110056, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38224783

RESUMEN

BACKGROUND: Intracranial electrodes are typically localized from post-implantation CT artifacts. Automatic algorithms localizing low signal-to-noise ratio artifacts and high-density electrode arrays are missing. Additionally, implantation of grids/strips introduces brain deformations, resulting in registration errors when fusing post-implantation CT and pre-implantation MR images. Brain-shift compensation methods project electrode coordinates to cortex, but either fail to produce smooth solutions or do not account for brain deformations. NEW METHODS: We first introduce GridFit, a model-based fitting approach that simultaneously localizes all electrodes' CT artifacts in grids, strips, or depth arrays. Second, we present CEPA, a brain-shift compensation algorithm combining orthogonal-based projections, spring-mesh models, and spatial regularization constraints. RESULTS: We tested GridFit on ∼6000 simulated scenarios. The localization of CT artifacts showed robust performance under difficult scenarios, such as noise, overlaps, and high-density implants (<1 mm errors). Validation with data from 20 challenging patients showed 99% accurate localization of the electrodes (3160/3192). We tested CEPA brain-shift compensation with data from 15 patients. Projections accounted for simple mechanical deformation principles with < 0.4 mm errors. The inter-electrode distances smoothly changed across neighbor electrodes, while changes in inter-electrode distances linearly increased with projection distance. COMPARISON WITH EXISTING METHODS: GridFit succeeded in difficult scenarios that challenged available methods and outperformed visual localization by preserving the inter-electrode distance. CEPA registration errors were smaller than those obtained for well-established alternatives. Additionally, modeling resting-state high-frequency activity in five patients further supported CEPA. CONCLUSION: GridFit and CEPA are versatile tools for registering intracranial electrode coordinates, providing highly accurate results even in the most challenging implantation scenarios. The methods are implemented in the iElectrodes open-source toolbox.


Asunto(s)
Electroencefalografía , Imagen por Resonancia Magnética , Humanos , Electroencefalografía/métodos , Electrodos Implantados , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA