Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Pflugers Arch ; 473(3): 417-434, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33638008

RESUMEN

Store-operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway that is present in virtually every cell type. Over the last two decades, many studies have implicated this non-voltage dependent Ca2+ entry pathway in cardiac physiology. The relevance of the SOCE pathway in cardiomyocytes is often questioned given the well-established role for excitation contraction coupling. In this review, we consider the evidence that STIM1 and SOCE contribute to Ca2+ dynamics in cardiomyocytes. We discuss the relevance of this pathway to cardiac growth in response to developmental and pathologic cues. We also address whether STIM1 contributes to Ca2+ store refilling that likely impacts cardiac pacemaking and arrhythmogenesis in cardiomyocytes.


Asunto(s)
Señalización del Calcio/fisiología , Proteínas Sensoras del Calcio Intracelular/metabolismo , Miocitos Cardíacos/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Animales , Acoplamiento Excitación-Contracción/fisiología , Humanos
2.
Arterioscler Thromb Vasc Biol ; 36(5): 984-93, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27013612

RESUMEN

OBJECTIVE: Vascular smooth muscle cell (SMC) migration is regulated by cytoskeletal remodeling as well as by certain transient receptor potential (TRP) channels, nonselective cation channels that modulate calcium influx. Proper function of multiple subfamily C TRP (TRPC) channels requires the scaffolding protein Homer 1, which associates with the actin-binding protein Drebrin. We found that SMC Drebrin expression is upregulated in atherosclerosis and in response to injury and investigated whether Drebrin inhibits SMC activation, either through regulation of TRP channel function via Homer or through a direct effect on the actin cytoskeleton. APPROACH AND RESULTS: Wild-type (WT) and congenic Dbn(-/+) mice were subjected to wire-mediated carotid endothelial denudation. Subsequent neointimal hyperplasia was 2.4±0.3-fold greater in Dbn(-/+) than in WT mice. Levels of globular actin were equivalent in Dbn(-/+) and WT SMCs, but there was a 2.4±0.5-fold decrease in filamentous actin in Dbn(-/+) SMCs compared with WT. Filamentous actin was restored to WT levels in Dbn(-/+) SMCs by adenoviral-mediated rescue expression of Drebrin. Compared with WT SMCs, Dbn(-/+) SMCs exhibited increased TRP channel activity in response to platelet-derived growth factor, increased migration assessed in Boyden chambers, and increased proliferation. Enhanced TRP channel activity and migration in Dbn(-/+) SMCs were normalized to WT levels by rescue expression of not only WT Drebrin but also a mutant Drebrin isoform that binds actin but fails to bind Homer. CONCLUSIONS: Drebrin reduces SMC activation through its interaction with the actin cytoskeleton but independently of its interaction with Homer scaffolds.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Neointima , Neuropéptidos/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/genética , Traumatismos de las Arterias Carótidas/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Genotipo , Proteínas de Andamiaje Homer/metabolismo , Humanos , Hiperplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Neuropéptidos/deficiencia , Neuropéptidos/genética , Fenotipo , Unión Proteica , Transducción de Señal , Transfección , Canales de Potencial de Receptor Transitorio/metabolismo , Remodelación Vascular
3.
J Clin Invest ; 134(7)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300705

RESUMEN

Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.


Asunto(s)
Debilidad Muscular , Membrana Nuclear , Molécula de Interacción Estromal 1 , Animales , Humanos , Ratones , Calcio/metabolismo , Señalización del Calcio , Debilidad Muscular/genética , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteína ORAI1/genética , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
4.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205564

RESUMEN

Stromal interaction molecule 1 (STIM1) is a Ca 2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle where it is best known for its role in store operated Ca 2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focus on a gain of function mutation that occurs in humans and mice (STIM1 +/D84G mice) where muscles exhibit constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca 2+ transients, SR Ca 2+ content or excitation contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1 +/D84G muscle disrupts nuclear-cytosolic coupling causing severe derangement in nuclear architecture, DNA damage, and altered lamina A associated gene expression. Functionally, we found D84G STIM1 reduced the transfer of Ca 2+ from the cytosol to the nucleus in myoblasts resulting in a reduction of [Ca 2+ ] N . Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca 2+ signaling to nuclear stability in skeletal muscle.

5.
Mol Metab ; 57: 101429, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34979330

RESUMEN

OBJECTIVE: Stromal interaction molecule 1 (STIM1) is a single-pass transmembrane endoplasmic/sarcoplasmic reticulum (E/SR) protein recognized for its role in a store operated Ca2+ entry (SOCE), an ancient and ubiquitous signaling pathway. Whereas STIM1 is known to be indispensable during development, its biological and metabolic functions in mature muscles remain unclear. METHODS: Conditional and tamoxifen inducible muscle STIM1 knock-out mouse models were coupled with multi-omics tools and comprehensive physiology to understand the role of STIM1 in regulating SOCE, mitochondrial quality and bioenergetics, and whole-body energy homeostasis. RESULTS: This study shows that STIM1 is abundant in adult skeletal muscle, upregulated by exercise, and is present at SR-mitochondria interfaces. Inducible tissue-specific deletion of STIM1 (iSTIM1 KO) in adult muscle led to diminished lean mass, reduced exercise capacity, and perturbed fuel selection in the settings of energetic stress, without affecting whole-body glucose tolerance. Proteomics and phospho-proteomics analyses of iSTIM1 KO muscles revealed molecular signatures of low-grade E/SR stress and broad activation of processes and signaling networks involved in proteostasis. CONCLUSION: These results show that STIM1 regulates cellular and mitochondrial Ca2+ dynamics, energy metabolism and proteostasis in adult skeletal muscles. Furthermore, these findings provide insight into the pathophysiology of muscle diseases linked to disturbances in STIM1-dependent Ca2+ handling.


Asunto(s)
Tolerancia al Ejercicio , Proteostasis , Molécula de Interacción Estromal 1 , Animales , Calcio/metabolismo , Metabolismo Energético , Ratones , Músculo Esquelético/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
6.
JCI Insight ; 6(17)2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34494555

RESUMEN

Stromal interaction molecule 1 (STIM1), the sarcoplasmic reticulum (SR) transmembrane protein, activates store-operated Ca2+ entry (SOCE) in skeletal muscle and, thereby, coordinates Ca2+ homeostasis, Ca2+-dependent gene expression, and contractility. STIM1 occupies space in the junctional SR membrane of the triads and the longitudinal SR at the Z-line. How STIM1 is organized and is retained in these specific subdomains of the SR is unclear. Here, we identified desmin, the major type III intermediate filament protein in muscle, as a binding partner for STIM1 based on a yeast 2-hybrid screen. Validation of the desmin-STIM1 interaction by immunoprecipitation and immunolocalization confirmed that the CC1-SOAR domains of STIM1 interact with desmin to enhance STIM1 oligomerization yet limit SOCE. Based on our studies of desmin-KO mice, we developed a model wherein desmin connected STIM1 at the Z-line in order to regulate the efficiency of Ca2+ refilling of the SR. Taken together, these studies showed that desmin-STIM1 assembles a cytoskeletal-SR connection that is important for Ca2+ signaling in skeletal muscle.


Asunto(s)
Desmina/genética , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , ARN/genética , Molécula de Interacción Estromal 1/genética , Animales , Señalización del Calcio , Células Cultivadas , Desmina/biosíntesis , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Microscopía Electrónica de Transmisión , Modelos Animales , Músculo Esquelético/ultraestructura , Retículo Sarcoplasmático/metabolismo , Molécula de Interacción Estromal 1/biosíntesis
7.
Cell Calcium ; 87: 102163, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32014794

RESUMEN

Pacemaker action potentials emerge from the sinoatrial node (SAN) and rapidly propagate through the atria to the AV node via preferential conduction pathways, including one associated with the coronary sinus. However, few distinguishing features of these tracts are known. Identifying specific molecular markers to distinguish among these conduction pathways will have important implications for understanding atrial conduction and atrial arrhythmogenesis. Using a Stim1 reporter mouse, we discovered stromal interaction molecule 1 (STIM1)-expressing coronary sinus cardiomyocytes (CSC)s in a tract from the SAN to the coronary sinus. Our studies here establish that STIM1 is a molecular marker of CSCs and we propose a role for STIM1-CSCs in interatrial conduction. Deletion of Stim1 from the CSCs slowed interatrial conduction and increased susceptibility to atrial arrhythmias. Store-operated Ca2+ currents (Isoc) in response to Ca2+ store depletion were markedly reduced in CSCs and their action potentials showed electrical remodeling. Our studies identify STIM1 as a molecular marker for a coronary sinus interatrial conduction pathway. We propose a role for SOCE in Ca2+ signaling of CSCs and implicate STIM1 in atrial arrhythmogenesis.


Asunto(s)
Señalización del Calcio , Seno Coronario/citología , Atrios Cardíacos/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Miocitos Cardíacos/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/fisiopatología , Seno Coronario/fisiopatología , Eliminación de Gen , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Activación del Canal Iónico , Ratones Endogámicos C57BL , Ratones Noqueados , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/fisiopatología
8.
Cell Calcium ; 77: 20-28, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30508734

RESUMEN

Store operated Ca2+ entry (SOCE) is an ancient and ubiquitous Ca2+ signaling pathway discovered decades ago, but the function of SOCE in human physiology is only now being revealed. The relevance of this pathway to striated muscle was solidified with the description of skeletal myopathies that result from mutations in STIM1 and Orai1, the two SOCE components. Here, we consider the evidence for STIM1 and SOCE in cardiac muscle and the sinoatrial node. We highlight recent studies revealing a role for STIM1 in cardiac growth in response to developmental and pathologic cues. We also review the role of STIM1 in the regulation of SOCE and Ca2+ store refilling in a non-Orai dependent manner. Finally, we discuss the importance of this pathway in ventricular cardiomyocytes where SOCE contribute to developmental growth and in pacemaker cells where SOCE likely has a fundamental to generating the cardiac rhythm.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Miocardio/metabolismo , Proteínas de Neoplasias/metabolismo , Nodo Sinoatrial/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Animales , Humanos , Miocitos Cardíacos/metabolismo , Proteína ORAI1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA