RESUMEN
Materials containing heterogeneous nanostructures hold great promise for achieving superior mechanical properties. However, the strengthening effect due to plastically inhomogeneous deformation in heterogeneous nanostructures has not been clearly understood. Here, we investigate a prototypical heterogeneous nanostructured material of gradient nanotwinned (GNT) Cu to unravel the origin of its extra strength arising from gradient nanotwin structures relative to uniform nanotwin counterparts. We measure the back and effective stresses of GNT Cu with different nanotwin thickness gradients and compare them with those of homogeneous nanotwinned Cu with different uniform nanotwin thicknesses. We find that the extra strength of GNT Cu is caused predominantly by the extra back stress resulting from nanotwin thickness gradient, while the effective stress is almost independent of the gradient structures. The combined experiment and strain gradient plasticity modeling show that an increasing structural gradient in GNT Cu produces an increasing plastic strain gradient, thereby raising the extra back stress. The plastic strain gradient is accommodated by the accumulation of geometrically necessary dislocations inside an unusual type of heterogeneous dislocation structure in the form of bundles of concentrated dislocations. Such a heterogeneous dislocation structure produces microscale internal stresses leading to the extra back stress in GNT Cu. Altogether, this work establishes a fundamental connection between the gradient structure and extra strength in GNT Cu through the mechanistic linkages of plastic strain gradient, heterogeneous dislocation structure, microscale internal stress, and extra back stress. Broadly, this work exemplifies a general approach to unraveling the strengthening mechanisms in heterogeneous nanostructured materials.
RESUMEN
Phthalate plasticizers (PAEs) are posing a serious threat to human health, so it is urgent to develop effective and reliable ways to detect the food additives PAEs sensitively. In this study, we have reported plasmonic bimetallic Au@Ag core-shell nanocuboids for the rapid and sensitive detection of PAEs in liquor samples with a label-free Surface-enhanced Raman Spectroscopy (SERS) strategy. Compared with single-element nanostructures, the bimetallic SERS platform can integrate two distinct functions into a single entity with unprecedented properties. Consequently, we synthesized Au@Ag nanocuboids (Au@Ag NCs) composed of a Au nanorod (Au NR) core and a Ag cuboid shell, which could produce richer and broader plasmonic resonance modes than Au NRs. It is obvious that the SERS signals of crystal violet (CV) and butyl benzyl phthalate (BBP) reached a maximum as the thickness of the Ag coating shell was in a certain threshold and there was a strong dependence of the Raman enhancement on the Ag cuboid shell-thickness. Based on the optimized size, the sensitivity and repeatability of Au@Ag NCs were evaluated with limits of detection (LODs) at around 10-9 M both for BBP and diethylhexyl phthalate (DEHP). In addition, the SERS active substrate core-shell Au@Ag NCs can be used to detect BBP as low as 1.3 mg kg-1 spiked into the liquor samples. Thereby, the unique bimetallic Au@Ag NCs showed a huge potential for the rapid and sensitive detection of PAEs in liquor samples.
RESUMEN
In this work, we combined three-dimensional (3D) necklace-like Te-Au reticula as novel surface-enhanced Raman scattering (SERS) active substrates with oxidation-reduction displacement reactions to construct a molecular machine for SERS detection. The structurally tunable 3D necklace-like spatial structures generated more active 'hot spots' and thus enhanced the sensitivity of SERS signals. Besides, layers of ultrathin nanowires showed high sequence dependence that ensure the repeatability and abundant hotspots at interparticle gaps and guarantee the high SERS performance of the substrate. A better-localized surface plasmon resonance (LSPR) effect of the sensor was verified by finite-difference time-domain (FDTD) analysis in both Raman intensities and electromagnetic field distributions compared to the citrate-stabilized AuNPs and CTAB-protected AuNRs. The proposed strategy can also serve as a universally amplified and sensitive detection platform for monitoring different molecules, thus achieving an amplification detection of 3,3'-diethylthiatricarbocyanine iodide (DTTCI) are 1 nM and R6G with a low limit of detection of 1 pM. Especially, the intensity of the main vibration of R6G from 30 spots of SERS data with excellent reproducibility (relative standard deviation of 6.25 %). High selectivity and accuracy of the SERS sensor were proved by practical analysis melamine (MM) in milk with a linear calibration curve (R2 = 0.9962) and a limit of detection of 0.75 mg/kg. Our research provides a new perspective to construct 3D SERS sensor from integrated structural design.