Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(9): e2217256120, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802424

RESUMEN

Crystallographic control of crystals as catalysts with precise geometrical and chemical features is significantly important to develop sustainable chemistry, yet highly challenging. Encouraged by first principles calculations, precise structure control of ionic crystals could be realized by introducing an interfacial electrostatic field. Herein, we report an efficient in situ dipole-sourced electrostatic field modulation strategy using polarized ferroelectret, for crystal facet engineering toward challenging catalysis reactions, which avoids undesired faradic reactions or insufficient field strength by conventional external electric field. Resultantly, a distinct structure evolution from tetrahedron to polyhedron with different dominated facets of Ag3PO4 model catalyst was obtained by tuning the polarization level, and similar oriented growth was also realized by ZnO system. Theoretical calculations and simulation reveal that the generated electrostatic field can effectively guide the migration and anchoring of Ag+ precursors and free Ag3PO4 nuclei, achieving oriented crystal growth by thermodynamic and kinetic balance. The faceted Ag3PO4 catalyst exhibits high performance in photocatalytic water oxidation and nitrogen fixation for valuable chemicals production, validating the effectiveness and potential of this crystal regulation strategy. Such an electrically tunable growth concept by electrostatic field provides new synthetic insights and great opportunity to effectively tailor the crystal structures for facet-dependent catalysis.

2.
Nano Lett ; 24(9): 2812-2820, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396345

RESUMEN

Electroreduction of waste nitrate to valuable ammonia offers a green solution for environmental restoration and energy storage. However, the electrochemical self-reconstruction of catalysts remains a huge challenge in terms of maintaining their stability, achieving the desired active sites, and managing metal leaching. Herein, we present an electrical pulse-driven Co surface reconstruction-coupled Coδ+ shuttle strategy for the precise in situ regulation of the Co(II)/Co(III) redox cycle on the Co-based working electrode and guiding the dissolution and redeposition of Co-based particles on the counter electrode. As result, the ammonia synthesis performance and stability are significantly promoted while cathodic hydrogen evolution and anodic ammonia oxidation in a membrane-free configuration are effectively blocked. A high rate of ammonia production of 1.4 ± 0.03 mmol cm-2 h-1 is achieved at -0.8 V in a pulsed system, and the corresponding nitrate-to-ammonia Faraday efficiency is 91.7 ± 1.0%. This work holds promise for the regulation of catalyst reactivity and selectivity by engineering in situ controllable structural and chemical transformations.

3.
Environ Sci Technol ; 58(28): 12708-12718, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38953681

RESUMEN

Electroreduction of nitrate (NO3RR) to ammonia in membraneless electrolyzers is of great significance for reducing the cost and saving energy consumption. However, severe chemical crossover with side reactions makes it challenging to achieve ideal electrolysis. Herein, we propose a general strategy for efficient membraneless ammonia synthesis by screening NO3RR catalysts with inferior oxygen reduction activity and matching the counter electrode (CE) with good oxygen evolution activity while blocking anodic ammonia oxidation. Consequently, screening the available Co-Co system, the membraneless NO3--to-NH3 conversion performance was significantly higher than H-type cells using costly proton-exchange membranes. At 200 mA cm-2, the full-cell voltage of the membraneless system (∼2.5 V) is 4 V lower than that of the membrane system (∼6.5 V), and the savings are 61.4 kW h (or 56.9%) per 1 kg NH3 produced. A well-designed pulse process, inducing reversible surface reconstruction that in situ generates and restores the active Co(III) species at the working electrode and forms favorable Co3O4/CoOOH at the CE, further significantly improves NO3--to-NH3 conversion and blocks side reactions. A maximum NH3 yield rate of 1500.9 µmol cm-2 h-1 was achieved at -0.9 V (Faraday efficiency 92.6%). This pulse-coupled membraneless strategy provides new insights into design complex electrochemical synthesis.


Asunto(s)
Amoníaco , Nitratos , Amoníaco/química , Electrodos , Oxidación-Reducción , Técnicas Electroquímicas , Electrólisis , Catálisis
4.
Angew Chem Int Ed Engl ; 63(15): e202400428, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38291811

RESUMEN

Tandem nitrate electroreduction reaction (NO3 -RR) is a promising method for green ammonia (NH3) synthesis. However, the mismatched kinetics processes between NO3 --to-NO2 - and NO2 --to-NH3 results in poor selectivity for NH3 and excess NO2 - evolution in electrolyte solution. Herein, a Ni2+ substitution strategy for developing oxide heterostructure in Co/Fe layered double oxides (LDOs) was designed and employed as tandem electrocataltysts for NO3 -RR. (Co0.83Ni0.16)2Fe exhibited a high NH3 yield rate of 50.4 mg ⋅ cm-2 ⋅ h-1 with a Faradaic efficiency of 97.8 % at -0.42 V vs. reversible hydrogen electrode (RHE) in a pulsed electrolysis test. By combining with in situ/operando characterization technologies and theoretical calculations, we observed the strong selectivity of NH3 evolution over (Co0.83Ni0.16)2Fe, with Ni playing a dual role in NO3 -RR by i) modifying the electronic behavior of Co, and ii) serving as complementary site for active hydrogen (*H) supply. Therefore, the adsorption capacity of *NO2 and its subsequent hydrogenation on the Co sites became more thermodynamically feasible. This study shows that Ni substitution promotes the kinetics of the NO3 -RR and provides insights into the design of tandem electrocatalysts for NH3 evolution.

5.
Angew Chem Int Ed Engl ; 62(24): e202217337, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37074107

RESUMEN

Electrocatalytic nitrate reduction sustainably produces ammonia and alleviates water pollution, yet is still challenging due to the kinetic mismatch and hydrogen evolution competition. Cu/Cu2 O heterojunction is proven effective to break the rate-determining NO3 - -to-NO2 - step for efficient NH3 conversion, while it is unstable due to electrochemical reconstruction. Here we report a programmable pulsed electrolysis strategy to achieve reliable Cu/Cu2 O structure, where Cu is oxidized to CuO during oxidation pulse, then regenerating Cu/Cu2 O upon reduction. Alloying with Ni further modulates hydrogen adsorption, which transfers from Ni/Ni(OH)2 to N-containing intermediates on Cu/Cu2 O, promoting NH3 formation with a high NO3 - -to-NH3 Faraday efficiency (88.0±1.6 %, pH 12) and NH3 yield rate (583.6±2.4 µmol cm-2 h-1 ) under optimal pulsed conditions. This work provides new insights to in situ electrochemically regulate catalysts for NO3 - -to-NH3 conversion.

6.
Environ Sci Technol ; 55(3): 2110-2120, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33427455

RESUMEN

Oxygen vacancies (OVs) play a crucial role in the catalytic activity of metal-based catalysts; however, their activation mechanism toward peroxydisulfate (PDS) still lacks reasonable explanation. In this study, by taking bismuth bromide (BiOBr) as an example, we report an OV-mediated PDS activation process for degradation of bisphenol A (BPA) employing singlet oxygen (1O2) as the main reactive species under alkaline conditions. The experimental results show that the removal efficiency of BPA is proportional to the number of OVs and is highly related to the dosage of PDS and the catalyst. The surface OVs of BiOBr provide ideal sites for the inclusion of hydroxyl ions (HO-) to form BiIII-OH species, which are regarded as the major active sites for the adsorption and activation of PDS. Unexpectedly, the activation of PDS occurs through a nonradical mechanism mediated by 1O2, which is generated via multistep reactions, involving the formation of an intermediate superoxide radical (O2•-) and the redox cycle of Bi(III)/Bi(IV). This work is dedicated to the in-depth mechanism study into PDS activation over OV-rich BiOBr samples and provides a novel perspective for the activation of peroxides by defective materials in the absence of additional energy supply or aqueous transition metal ions.


Asunto(s)
Oxígeno , Oxígeno Singlete , Catálisis , Oxidación-Reducción , Peróxidos
7.
Chemosphere ; 303(Pt 2): 135119, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35642858

RESUMEN

The energy-induced peroxydisulfate (PDS) activation is a green and effective approach for pollutant degradation, while the huge energy consumption would significantly increase the cost of wastewater treatment. In this study, by taking carbon nanotubes (CNTs) membrane as the light to heat (LTH) conversion materials, we developed a photothermal PDS activation process for degradation of organic contaminants in a flow-by reactor, with hydroxyl radicals (•OH) and sulfate radicals (SO4•-) as the main reactive species. This system has excellent in-situ LTH conversion performance and heat transfer ability. As a result, various pollutants are degraded with an efficiency higher than 90%. More importantly, the LTH device exhibits satisfying stability and could be used for pollutant (i.e., methyl orange (MO)) removal under solar irradiation. In addition, some important factors (i.e., irradiation distance, residence time, solution pH, and PDS dosage) that might significantly influence the removal efficiency of pollutants are optimized. This work provides a novel perspective for the activation of PDS via CNTs as photothermal materials for pollutant degradation with a flow-by reactor.


Asunto(s)
Contaminantes Ambientales , Nanotubos de Carbono , Purificación del Agua , Membranas , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA