Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 524(7563): 93-6, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25970247

RESUMEN

A novel Ebola virus (EBOV) first identified in March 2014 has infected more than 25,000 people in West Africa, resulting in more than 10,000 deaths. Preliminary analyses of genome sequences of 81 EBOV collected from March to June 2014 from Guinea and Sierra Leone suggest that the 2014 EBOV originated from an independent transmission event from its natural reservoir followed by sustained human-to-human infections. It has been reported that the EBOV genome variation might have an effect on the efficacy of sequence-based virus detection and candidate therapeutics. However, only limited viral information has been available since July 2014, when the outbreak entered a rapid growth phase. Here we describe 175 full-length EBOV genome sequences from five severely stricken districts in Sierra Leone from 28 September to 11 November 2014. We found that the 2014 EBOV has become more phylogenetically and genetically diverse from July to November 2014, characterized by the emergence of multiple novel lineages. The substitution rate for the 2014 EBOV was estimated to be 1.23 × 10(-3) substitutions per site per year (95% highest posterior density interval, 1.04 × 10(-3) to 1.41 × 10(-3) substitutions per site per year), approximating to that observed between previous EBOV outbreaks. The sharp increase in genetic diversity of the 2014 EBOV warrants extensive EBOV surveillance in Sierra Leone, Guinea and Liberia to better understand the viral evolution and transmission dynamics of the ongoing outbreak. These data will facilitate the international efforts to develop vaccines and therapeutics.


Asunto(s)
Ebolavirus/genética , Evolución Molecular , Variación Genética/genética , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Secuencia de Bases , Brotes de Enfermedades/estadística & datos numéricos , Ebolavirus/aislamiento & purificación , Monitoreo Epidemiológico , Genoma Viral/genética , Fiebre Hemorrágica Ebola/transmisión , Humanos , Epidemiología Molecular , Tasa de Mutación , Filogenia , Filogeografía , Sierra Leona/epidemiología
3.
Front Microbiol ; 14: 1137932, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125183

RESUMEN

Introduction: Northeast China has always been an area with severe brucellosis prevalence. This study will identify Brucella in Northeast China and test its resistance to antibiotics, in order to clarify its resistance mechanism. Brucella is a widespread and highly pathogenic bacteria that poses serious threats to public health and animal husbandry. Methods: In this study, 61 Brucella isolates were identified by abortus-melitensis-ovis-suis polymerase chain reaction (AMOS-PCR) for biotypes and epidemic potential was clarified by multi-locus sequence analysis. Whole-genome sequencing (WGS) was performed and the antibiotic susceptibility of the Brucella strains against 13 antibiotics was detected with the use of E-test strips. Results: The results showed that all of the isolates were Brucella melitensis ST8, group CC4 with little genetic variation and obvious geographical characteristics. All 61 Brucella isolates were sensitive to doxycycline, tetracycline, minocycline, levofloxacin, ciprofloxacin, gentamicin, and streptomycin, while 24.6%, 86.9%, 65.6%, 27.9%, 3.3%, and 1.6% were resistant to rifampin, azithromycin, cefepime, cefoperazone/sulbactam, cefotaxime, and meperidine/sulfamethoxazole, respectively. This is the first report of cephalosporin-resistant B. melitensis in China. The WGS results indicated that about 60% of the antibiotic resistance genes were associated with efflux pumps (mainly the resistance nodulation division family). Discussion: Brucellosis is usually treated with antibiotics for several months, which can easily lead to the emergence of antibiotic resistance. To ensure the effectiveness and safety of antibiotics for treatment of brucellosis, continuous surveillance of antibiotic susceptibility is especially important.

4.
Biomed Res Int ; 2022: 8445484, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845943

RESUMEN

Water lily is an important ornamental flower plant which is capable of viviparous plantlet development. But no study has been reported on the molecular basis of viviparity in water lily. Hence, we performed a comparative transcriptome study between viviparous water lily Nymphaea micrantha and a nonviviparous species Nymphaea colorata at four developmental stages. The higher expression of highly conserved AUX/IAA, ARF, GH3, and SAUR gene families in N. micrantha compared to N. colorata is predicted to have a major impact on the development and evolution of viviparity in water lily. Likewise, differential regulation of hormone signaling, brassinosteroid, photosynthesis, and energy-related pathways in the two species provide clues of their involvement in viviparity phenomenon. This study revealed the complex mechanism of viviparity trait in water lily. The transcriptomic signatures identified are important basis for future breeding and research of viviparity in water lily and other plant species.


Asunto(s)
Nymphaea , Flores/genética , Flores/metabolismo , Fitomejoramiento , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA