Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 75(12): 3475-3479, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32835381

RESUMEN

OBJECTIVES: To the best of our knowledge, we describe the first evidence in Europe of an MDR, blaNDM-4-positive Escherichia coli isolated from a food-producing animal, harboured by a novel IncFII plasmid of which we report the complete sequence. METHODS: One blaNDM-4-positive E. coli isolated in 2019 from the caecal contents of a fattening pig in Italy was in-depth characterized by combined bioinformatic analysis of Oxford Nanopore long reads and Illumina short reads, for in silico typing, determination of the blaNDM-4 genetic context and full reconstruction of the blaNDM-4-carrying plasmid. RESULTS: The isolate belonged to ST641 and to the genoserotype O108:H23 and tested positive for different virulence genes and plasmid replicons. The MDR phenotype of resistance to all ß-lactams, carbapenems, sulfamethoxazole and trimethoprim was mediated by blaTEM-1B, blaNDM-4, sul1/sul3 and dfrA12, respectively. The blaNDM-4 gene was harboured by a novel 53 043 bp IncFII plasmid (pMOL412_FII) composed of four main genetic regions, including an MDR region (MRR-NDM-4) of 16 kb carrying blaNDM-4 and several antimicrobial resistance genes located in a class 1 integron. pMOL412_FII was closely related to another ∼90.3 kb plasmid (pM109_FII) harbouring blaNDM-4 in an E. coli isolated from a human patient in Myanmar. CONCLUSIONS: To the best of our knowledge, we have identified for the first time in Europe an NDM-producing Enterobacterales in livestock and resolved the complete sequence of the novel pMOL412_FII plasmid harbouring blaNDM-4 in an MRR. A global One Health approach, comparing genomic data from different sources and geographical areas, may help to trace back and control possible plasmid-borne carbapenemase gene transmission between animals and humans and along the food chain at international level.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Animales , Antibacterianos/farmacología , Carbapenémicos/farmacología , Escherichia coli/genética , Infecciones por Escherichia coli/veterinaria , Europa (Continente) , Humanos , Italia , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Porcinos , beta-Lactamasas/genética
2.
Antibiotics (Basel) ; 12(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36978397

RESUMEN

The cfr genes encode for a 23S rRNA methyltransferase, conferring a multiresistance phenotype to phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A antibiotics. These genes have been described in staphylococci, including methicillin-resistant Staphylococcus aureus (MRSA). In this study, we retrospectively performed an in-depth genomic characterisation of three cfr-positive, multidrug-resistant (MDR) livestock-associated (LA) MRSA clonal complexes (CCs) 1 and 398 detected in different Italian pig holdings (2008-2011) during population studies on Italian livestock (2008-2014). We used a combined Illumina and Oxford Nanopore Technologies (ONT) whole genome sequencing (WGS) approach on two isolates (the 2008 CC1 and the 2010 CC398 isolates, but not the 2011 CC1 isolate). Interestingly, the three isolates presented different cfr variants, with only one displaying a linezolid-resistant phenotype. In isolate 2008 CC1, the cfr gene was identified within a Tn558 composite transposon-like structure flanked by IS elements located on a novel 44,826 bp plasmid. This represents the first report of CC1 LA-MRSA harbouring the cfr gene in its functional variant. Differently, cfr was chromosomally located in isolate 2010 CC398. Our findings have significant public health implications, confirm the need for the continuous genomic surveillance of cfr-positive zoonotic LA-MRSA, and backdate cfr presence in LA-MRSA from Italian pigs to at least 2008.

3.
Microorganisms ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201448

RESUMEN

Avian malaria is a worldwide distributed, vector-born disease of birds caused by parasites of the order Haemosporida. There is a lack of knowledge about the presence and pathogenetic role of Haemosporida in Psittacidae. Here we report a case of avian malaria infection in lovebirds (Agapornis roseicollis), with the genetic characterization of the Plasmodium species involved. The birds were hosted in a zoo located in Italy, where avian malaria cases in African penguins (Spheniscus demersus) were already reported. Animals (n = 11) were submitted for necropsy after sudden death and were subjected to further analyses including histopathology, bacteriology, and PCR for the research of haemosporidians. Clinical history, gross lesions and histopathological observation of schizonts, together with positive PCR results for Plasmodium spp., demonstrated that avian malaria was the cause of death for one animal and the possible cause of death for the other nine. The sequences obtained were compared using BLAST and analyzed for similarity to sequences available at the MalAvi database. Genetic analyses demonstrated a 100% nucleotide identity to Plasmodium matutinum LINN1 for all the obtained sequences. To our knowledge, this is the first report describing avian malaria in lovebirds.

4.
Vet Med Sci ; 5(3): 462-469, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31124305

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens of public health concern. Despite ruminants are the most important reservoir, STEC human infections have also been attributed to pigs. We examined for the presence of STEC in 234 samples of swine caecal content collected during the year 2015 at Italian abattoirs in the framework of the harmonized monitoring of antimicrobial resistance (Decision 2013/652/EU). The presence of stx genes was detected in 122 (52.1%) samples, which were subsequently subjected to STEC isolation and characterization. The analysis of the 66 isolated STEC strains showed that the majority of the isolates (74.2%) possessed the stx2a gene subtype, in a few cases (16.7%) in combination with stx2b or stx2c. Only 25.8% of isolates possessed the stx2e subtype, typical of swine-adapted STEC. None of the isolates possessed the intimin-coding eae gene and the majority of them did not belong to serogroups commonly associated with human infections. The results of this study suggest that pigs can be considered as potential reservoir of certain STEC types.


Asunto(s)
Reservorios de Enfermedades/microbiología , Infecciones por Escherichia coli/microbiología , Toxina Shiga II/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Enfermedades de los Porcinos/microbiología , Mataderos , Animales , Ciego/microbiología , Infecciones por Escherichia coli/epidemiología , Humanos , Italia/epidemiología , Prevalencia , Serogrupo , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/inmunología , Porcinos , Enfermedades de los Porcinos/epidemiología , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA