Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Psychiatry ; 27(9): 3583-3591, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681081

RESUMEN

Dopamine (DA) and glutamate neurotransmission are strongly implicated in schizophrenia pathophysiology. While most studies focus on contributions of neurons that release only DA or glutamate, neither DA nor glutamate models alone recapitulate the full spectrum of schizophrenia pathophysiology. Similarly, therapeutic strategies limited to either system cannot effectively treat all three major symptom domains of schizophrenia: positive, negative, and cognitive symptoms. Increasing evidence suggests extensive interactions between the DA and glutamate systems and more effective treatments may therefore require the targeting of both DA and glutamate signaling. This offers the possibility that disrupting DA-glutamate circuitry between these two systems, particularly in the striatum and forebrain, culminate in schizophrenia pathophysiology. Yet, the mechanisms behind these interactions and their contributions to schizophrenia remain unclear. In addition to circuit- or system-level interactions between neurons that solely release either DA or glutamate, here we posit that functional alterations involving a subpopulation of neurons that co-release both DA and glutamate provide a novel point of integration between DA and glutamate systems, offering a key missing link in our understanding of schizophrenia pathophysiology. Better understanding of mechanisms underlying DA/glutamate co-release from these neurons may therefore shed new light on schizophrenia pathophysiology and lead to more effective therapeutics.


Asunto(s)
Dopamina , Esquizofrenia , Humanos , Dopamina/fisiología , Ácido Glutámico , Transmisión Sináptica/fisiología , Cuerpo Estriado
2.
J Neurosci ; 41(22): 4937-4947, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33893220

RESUMEN

Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the SNc. In contrast, DA neurons in the VTA are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the NAc, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared with DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT Environmental exposures to pesticides contribute significantly to pathologic processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness, including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone; and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting that VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.


Asunto(s)
Neuronas Dopaminérgicas/patología , Degeneración Nerviosa/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Insecticidas/toxicidad , Masculino , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Trastornos Parkinsonianos/inducido químicamente , Ratas , Ratas Endogámicas Lew , Rotenona/toxicidad
3.
Neurobiol Learn Mem ; 174: 107282, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32738461

RESUMEN

Distinct abnormalities in kynurenine pathway (KP) metabolism have been reported in various psychiatric disorders, including schizophrenia (SZ). Kynurenic acid (KYNA), a neuroactive metabolite of the KP, is elevated in individuals diagnosed with SZ and has been linked to cognitive impairments seen in the disorder. To further understand the role of KYNA in SZ etiology, we developed a prenatal insult model where kynurenine (100 mg/day) is fed to pregnant Wistar rats from embryonic day (ED) 15 to ED 22. As sex differences in the prevalence and severity of SZ have been observed, we presently investigated the impact of prenatal kynurenine exposure on KP metabolism and spatial learning and memory in male and female offspring. Specifically, brain tissue and plasma from offspring (control: ECon; kynurenine-treated: EKyn) in prepuberty (postnatal day (PD) 21), adolescence (PD 32-35), and adulthood (PD 56-85) were collected. Separate cohorts of adult offspring were tested in the Barnes maze to assess hippocampus- and prefrontal cortex-mediated learning and memory. Plasma tryptophan, kynurenine, and KYNA were unchanged between ECon and EKyn offspring across all three ages. Hippocampal and frontal cortex KYNA were elevated in male EKyn offspring only in adulthood, compared to ECon, while brain KYNA levels were unchanged in adult females. Male EKyn offspring were significantly impaired during acquisition of the Barnes maze and during reversal learning in the task. In female EKyn offspring, learning and memory remained relatively intact. Taken together, our data demonstrate that exposure to elevated kynurenine during the last week of gestation results in intriguing sex differences and further support the EKyn model as an attractive tool to study the pathophysiology of schizophrenia.


Asunto(s)
Encéfalo/efectos de los fármacos , Quinurenina/administración & dosificación , Memoria/efectos de los fármacos , Caracteres Sexuales , Aprendizaje Espacial/efectos de los fármacos , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratas Wistar , Esquizofrenia/inducido químicamente , Esquizofrenia/metabolismo
4.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38854057

RESUMEN

Age-related dopamine (DA) neuron loss is a primary feature of Parkinson's disease. However, it remains unclear whether similar biological processes occur during healthy aging, albeit to a lesser degree. We therefore determined whether midbrain DA neurons degenerate during aging in mice and humans. In mice, we identified no changes in midbrain neuron numbers throughout aging. Despite this, we found age-related decreases in midbrain mRNA expression of tyrosine hydroxylase (Th), the rate limiting enzyme of DA synthesis. Among midbrain glutamatergic cells, we similarly identified age-related declines in vesicular glutamate transporter 2 (Vglut2) mRNA expression. In co-transmitting Th +/Vglut2 + neurons, Th and Vglut2 transcripts decreased with aging. Importantly, striatal Th and Vglut2 protein expression remained unchanged. In translating our findings to humans, we found no midbrain neurodegeneration during aging and identified age-related decreases in TH and VGLUT2 mRNA expression similar to mouse. Unlike mice, we discovered diminished density of striatal TH+ dopaminergic terminals in aged human subjects. However, TH and VGLUT2 protein expression were unchanged in the remaining striatal boutons. Finally, in contrast to Th and Vglut2 mRNA, expression of most ribosomal genes in Th + neurons was either maintained or even upregulated during aging. This suggests a homeostatic mechanism where age-related declines in transcriptional efficiency are overcome by ongoing ribosomal translation. Overall, we demonstrate species-conserved transcriptional effects of aging in midbrain dopaminergic and glutamatergic neurons that are not accompanied by marked cell death or lower striatal protein expression. This opens the door to novel therapeutic approaches to maintain neurotransmission and bolster neuronal resilience.

5.
bioRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37205475

RESUMEN

Striatal projection neurons (SPNs) are traditionally segregated into two subpopulations expressing dopamine (DA) D1-like or D2-like receptors. However, this dichotomy is challenged by recent evidence. Functional and expression studies raise important questions: do SPNs co-express different DA receptors, and do these differences reflect unique striatal spatial distributions and expression profiles? Using RNAscope in mouse striatum, we report heterogenous SPN subpopulations distributed across dorsal-ventral and rostral-caudal axes. SPN subpopulations co-express multiple DA receptors, including D1 and D2 (D1/2R) and D1 and D3. Our integrative approach using single-nuclei multi-omics analyses provides a simple consensus to describe SPNs across diverse datasets, connecting it to complementary spatial mapping. Combining RNAscope and multi-omics shows D1/2R SPNs further separate into distinct subtypes according to spatial organization and conserved marker genes. Each SPN cell type contributes uniquely to genetic risk for neuropsychiatric diseases. Our results bridge anatomy and transcriptomics to offer new understandings of striatal neuron heterogeneity.

6.
bioRxiv ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37873436

RESUMEN

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

7.
Curr Environ Health Rep ; 9(4): 563-573, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36201109

RESUMEN

PURPOSE OF REVIEW: Sex dimorphism in Parkinson's disease (PD) is an ostensible feature of the neurological disorder, particularly as men are 1.5-2 times more likely to develop PD than women. Clinical features of the disease, such as presentation at onset, most prevalent symptoms, and response to treatment, are also affected by sex. Despite these well-known sex differences in PD risk and phenotype, the mechanisms that impart sex dimorphisms in PD remain poorly understood. RECENT FINDINGS: As PD incidence is influenced by environmental factors, an intriguing pattern has recently emerged in research studies suggesting a male-specific vulnerability to dopaminergic neurodegeneration caused by neurotoxicant exposure, with relative protection in females. These new experimental data have uncovered potential mechanisms that provide clues to the source of sex differences in dopaminergic neurodegeneration and other PD pathology such as alpha-synuclein toxicity. In this review, we discuss the emerging evidence of increased male sensitivity to neurodegeneration from environmental exposures. We examine mechanisms underlying dopaminergic neurodegeneration and PD-related pathologies with evidence supporting the roles of estrogen, SRY expression, the vesicular glutamate transporter VGLUT2, and the microbiome as prospective catalysts for male vulnerability. We also highlight the importance of including sex as a biological variable, particularly when evaluating dopaminergic neurotoxicity in the context of PD.


Asunto(s)
Enfermedad de Parkinson , Femenino , Masculino , Humanos , Enfermedad de Parkinson/etiología , Caracteres Sexuales , Estudios Prospectivos
8.
ACS Chem Neurosci ; 13(2): 187-193, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34994539

RESUMEN

Growing evidence has established that a subset of dopamine (DA) neurons co-release glutamate and express vesicular glutamate transporter 2 (VGLUT2). VGLUT2 expression in DA neurons plays a key role in selective vulnerability to DA neurodegeneration in Parkinson's disease (PD). In this review, we summarize recent findings on impacts of VGLUT2 expression and glutamate co-release from DA neurons on selective DA neuron vulnerability. We present evidence that DA neuron VGLUT2 expression may be neuroprotective, boosting DA neuron resilience in the context of ongoing neurodegenerative processes in PD. We highlight genetic and pesticide models of PD that have provided mechanistic insights into selective DA neuron vulnerability. Finally, we discuss potential neuroprotective mechanisms, focusing on roles of VGLUT2 and glutamate in promoting mitochondrial health and diminishing oxidative stress and excitotoxicity. Elucidating these mechanisms may ultimately lead to more effective treatments to boost DA neuron resilience that can slow or even prevent DA neurodegeneration.


Asunto(s)
Dopamina , Enfermedad de Parkinson , Neuronas Dopaminérgicas , Ácido Glutámico , Humanos , Proteína 2 de Transporte Vesicular de Glutamato
9.
FEBS J ; 288(5): 1462-1474, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32702182

RESUMEN

Projections of ventral tegmental area dopamine (DA) neurons to the medial shell of the nucleus accumbens have been increasingly implicated as integral to the behavioral and physiological changes involved in the development of substance use disorders (SUDs). Recently, many of these nucleus accumbens-projecting DA neurons were found to also release the neurotransmitter glutamate. This glutamate co-release from DA neurons is critical in mediating the effect of drugs of abuse on addiction-related behaviors. Potential mechanisms underlying the role(s) of dopamine/glutamate co-release in contributing to SUDs are unclear. Nevertheless, an important clue may relate to glutamate's ability to potentiate loading of DA into synaptic vesicles within terminals in the nucleus accumbens in response to drug-induced elevations in neuronal activity, enabling a more robust release of DA after stimulation. Here, we summarize how drugs of abuse, particularly cocaine, opioids, and alcohol, alter DA release in the nucleus accumbens medial shell, examine the potential role of DA/glutamate co-release in mediating these effects, and discuss future directions for further investigating these mechanisms.


Asunto(s)
Analgésicos Opioides/efectos adversos , Cocaína/efectos adversos , Dopamina/metabolismo , Etanol/efectos adversos , Ácido Glutámico/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/metabolismo , Núcleo Accumbens/metabolismo , Roedores , Especificidad de la Especie , Trastornos Relacionados con Sustancias/etiología , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/prevención & control , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo
10.
Aging Cell ; 20(5): e13365, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33909313

RESUMEN

Age is the greatest risk factor for Parkinson's disease (PD) which causes progressive loss of dopamine (DA) neurons, with males at greater risk than females. Intriguingly, some DA neurons are more resilient to degeneration than others. Increasing evidence suggests that vesicular glutamate transporter (VGLUT) expression in DA neurons plays a role in this selective vulnerability. We investigated the role of DA neuron VGLUT in sex- and age-related differences in DA neuron vulnerability using the genetically tractable Drosophila model. We found sex differences in age-related DA neurodegeneration and its associated locomotor behavior, where males exhibit significantly greater decreases in both DA neuron number and locomotion during aging compared with females. We discovered that dynamic changes in DA neuron VGLUT expression mediate these age- and sex-related differences, as a potential compensatory mechanism for diminished DA neurotransmission during aging. Importantly, female Drosophila possess higher levels of VGLUT expression in DA neurons compared with males, and this finding is conserved across flies, rodents, and humans. Moreover, we showed that diminishing VGLUT expression in DA neurons eliminates females' greater resilience to DA neuron loss across aging. This offers a new mechanism for sex differences in selective DA neuron vulnerability to age-related DA neurodegeneration. Finally, in mice, we showed that the ability of DA neurons to achieve optimal control over VGLUT expression is essential for DA neuron survival. These findings lay the groundwork for the manipulation of DA neuron VGLUT expression as a novel therapeutic strategy to boost DA neuron resilience to age- and PD-related neurodegeneration.


Asunto(s)
Envejecimiento/fisiología , Neuronas Dopaminérgicas/fisiología , Proteínas de Drosophila/fisiología , Caracteres Sexuales , Proteínas de Transporte Vesicular de Glutamato/fisiología , Animales , Supervivencia Celular , Neuronas Dopaminérgicas/metabolismo , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/metabolismo , Femenino , Humanos , Locomoción , Masculino , Ratones , Ratas , Proteínas de Transporte Vesicular de Glutamato/metabolismo
11.
Sci Rep ; 8(1): 6963, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29725029

RESUMEN

Inadequate sleep is a prevalent problem within our society that can result in cognitive dysfunction. Elevations in kynurenic acid (KYNA), a metabolite of the kynurenine pathway (KP) of tryptophan degradation known to impact cognition, in the brain may constitute a molecular link between sleep loss and cognitive impairment. To test this hypothesis, we investigated the impact of 6 hours of sleep deprivation on memory and KP metabolism (brain and plasma) in male and female rats. Sleep-deprived males were impaired in a contextual memory paradigm, and both sexes were impaired in a recognition memory paradigm. After sleep deprivation, hippocampal KYNA levels increased significantly only in males. The response in hippocampal KYNA levels to sleep loss was suppressed in gonadectomized males, delineating a role of circulating gonadal hormones. Circulating corticosterone, which has previously been linked to KP metabolism, correlated negatively with hippocampal KYNA in sleep-deprived females, however the relationship was not significant in male animals. Taken together, our study introduces striking sex differences in brain KYNA formation and circulating corticosterone in response to sleep deprivation. Relating these findings to sex differences in cognitive outcomes after sleep deprivation may further advance the development of novel therapeutic agents to overcome sleep loss-induced cognitive dysfunction.


Asunto(s)
Hipocampo/metabolismo , Ácido Quinurénico/metabolismo , Privación de Sueño/metabolismo , Animales , Cognición , Corticosterona/sangre , Corticosterona/metabolismo , Femenino , Hipocampo/fisiopatología , Quinurenina/metabolismo , Masculino , Memoria , Ratas , Ratas Wistar , Caracteres Sexuales , Privación de Sueño/sangre , Privación de Sueño/fisiopatología , Triptófano/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA