Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Anaesthesiol Clin Pharmacol ; 37(4): 509-516, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35340947

RESUMEN

Background and Aims: There is a lack of basic science data on the effect of dexmedetomidine on the hypoxic chemosensory reflex with both depression and stimulation suggested. The primary aim of this study was to assess if dexmedetomidine inhibited the cellular response to hypoxia in rat carotid body glomus cells, the cells of the organs mediating acute hypoxic ventilatory response (AHVR). Additionally, we used a small sample of mice to assess if there was any large influence of subsedative doses of dexmedetomidine on AHVR. Material and Methods: In the primary study, glomus cells isolated from neonatal rats were used to study the effect of 0.1 nM (n = 9) and 1 nM (n = 13) dexmedetomidine on hypoxia-elicited intracellular calcium [Ca2%]i influx using ratiometric fluorimetry. Secondarily, whole animal unrestrained plethysmography was used to study AHVR in a total of 8 age-matched C57BL6 mice, divided on successive days into two groups of four mice randomly assigned to receive sub-sedative doses of 5, 50, or 500 µg.kg-1 dexmedetomidine versus control in a crossover study design (total n = 12 exposures to drug with n = 12 controls). Results: There was no effect of dexmedetomidine on the hypoxia-elicited increase in [Ca2%]i in glomus cells (a mean ± SEM increase of 95 ± 32 nM from baseline with control hypoxia, 124 ± 41 nM with 0.1 nM dexmedetomidine; P = 0.514). In intact mice, dexmedetomidine had no effect on baseline ventilation during air-breathing (4.01 ± 0.3 ml.g-1.min-1 in control and 2.99 ± 0.5 ml.g-1.min-1 with 500 µg.kg-1 dexmedetomidine, the highest dose; P = 0.081) or on AHVR (136 ± 19% increase from baseline in control, 152 ± 46% with 500 µg.kg-1 dexmedetomidine, the highest dose; P = 0.536). Conclusion: Dexmedetomidine had no effect on the cellular responses to hypoxia. We conclude that it unlikely acts via inhibition of oxygen sensing at the glomus cell. The respiratory chemoreflex effects of this drug remain an open question. In our small sample of intact mice, hypoxic chemoreflex responses and basal breathing were preserved.

2.
Anesthesiology ; 133(5): 1046-1059, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32826405

RESUMEN

BACKGROUND: The degree to which different volatile anesthetics depress carotid body hypoxic response relates to their ability to activate TASK potassium channels. Most commonly, volatile anesthetic pairs act additively at their molecular targets. We examined whether this applied to carotid body TASK channels. METHODS: We studied halothane and isoflurane effects on hypoxia-evoked rise in intracellular calcium (Ca2+i, using the indicator Indo-1) in isolated neonatal rat glomus cells, and TASK single-channel activity (patch clamping) in native glomus cells and HEK293 cell line cells transiently expressing TASK-1. RESULTS: Halothane (5%) depressed glomus cell Ca2+i hypoxic response (mean ± SD, 94 ± 4% depression; P < 0.001 vs. control). Isoflurane (5%) had a less pronounced effect (53 ± 10% depression; P < 0.001 vs. halothane). A mix of 3% isoflurane/1.5% halothane depressed cell Ca2+i response (51 ± 17% depression) to a lesser degree than 1.5% halothane alone (79 ± 15%; P = 0.001), but similar to 3% isoflurane alone (44 ± 22%; P = 0.224), indicating subadditivity. Halothane and isoflurane increased glomus cell TASK-1/TASK-3 activity, but mixes had a lesser effect than that seen with halothane alone: 4% halothane/4% isoflurane yielded channel open probabilities 127 ± 55% above control, versus 226 ± 12% for 4% halothane alone (P = 0.009). Finally, in HEK293 cell line cells, progressively adding isoflurane (1.5 to 5%) to halothane (2.5%) reduced TASK-1 channel activity from 120 ± 38% above control, to 88 ± 48% (P = 0.034). CONCLUSIONS: In all three experimental models, the effects of isoflurane and halothane combinations were quantitatively consistent with the modeling of weak and strong agonists competing at a common receptor on the TASK channel.


Asunto(s)
Anestésicos por Inhalación/metabolismo , Cuerpo Carotídeo/metabolismo , Halotano/metabolismo , Isoflurano/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Cuerpo Carotídeo/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Combinación de Medicamentos , Interacciones Farmacológicas/fisiología , Células HEK293 , Halotano/farmacología , Humanos , Isoflurano/farmacología
3.
J Physiol ; 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29917232

RESUMEN

KEY POINTS: The carotid body is a peripheral arterial chemoreceptor that regulates ventilation in response to both acute and sustained hypoxia. Type I cells in this organ respond to low oxygen both acutely by depolarization and dense core vesicle secretion and, over the longer term, via cellular proliferation and enhanced ventilatory responses. Using lineage analysis, the present study shows that the Type I cell lineage itself proliferates and expands in response to sustained hypoxia. Inactivation of HIF-2α in Type I cells impairs the ventilatory, proliferative and cell intrinsic (dense core vesicle) responses to hypoxia. Inactivation of PHD2 in Type I cells induces multilineage hyperplasia and ultrastructural changes in dense core vesicles to form paraganglioma-like carotid bodies. These changes, similar to those observed in hypoxia, are dependent on HIF-2α. Taken together, these findings demonstrate a key role for the PHD2-HIF-2α couple in Type I cells with respect to the oxygen sensing functions of the carotid body. ABSTRACT: The carotid body is a peripheral chemoreceptor that plays a central role in mammalian oxygen homeostasis. In response to sustained hypoxia, it manifests a rapid cellular proliferation and an associated increase in responsiveness to hypoxia. Understanding the cellular and molecular mechanisms underlying these processes is of interest both to specialized chemoreceptive functions of that organ and, potentially, to the general physiology and pathophysiology of cellular hypoxia. We have combined cell lineage tracing technology and conditionally inactivated alleles in recombinant mice to examine the role of components of the HIF hydroxylase pathway in specific cell types within the carotid body. We show that exposure to sustained hypoxia (10% oxygen) drives rapid expansion of the Type I, tyrosine hydroxylase expressing cell lineage, with little transdifferentiation to (or from) that lineage. Inactivation of a specific HIF isoform, HIF-2α, in the Type I cells was associated with a greatly reduced proliferation of Type I cells and hypoxic ventilatory responses, with ultrastructural evidence of an abnormality in the action of hypoxia on dense core secretory vesicles. We also show that inactivation of the principal HIF prolyl hydroxylase PHD2 within the Type I cell lineage is sufficient to cause multilineage expansion of the carotid body, with characteristics resembling paragangliomas. These morphological changes were dependent on the integrity of HIF-2α. These findings implicate specific components of the HIF hydroxylase pathway (PHD2 and HIF-2α) within Type I cells of the carotid body with respect to the oxygen sensing and adaptive functions of that organ.

4.
J Physiol ; 594(5): 1179-95, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26337139

RESUMEN

Ventilatory sensitivity to hypoxia increases in response to continued hypoxic exposure as part of acute acclimatisation. Although this process is incompletely understood, insights have been gained through studies of the hypoxia-inducible factor (HIF) hydroxylase system. Genetic studies implicate these pathways widely in the integrated physiology of hypoxia, through effects on developmental or adaptive processes. In keeping with this, mice that are heterozygous for the principal HIF prolyl hydroxylase, PHD2, show enhanced ventilatory sensitivity to hypoxia and carotid body hyperplasia. Here we have sought to understand this process better through comparative analysis of inducible and constitutive inactivation of PHD2 and its principal targets HIF-1α and HIF-2α. We demonstrate that general inducible inactivation of PHD2 in tamoxifen-treated Phd2(f/f);Rosa26(+/CreERT2) mice, like constitutive, heterozygous PHD2 deficiency, enhances hypoxic ventilatory responses (HVRs: 7.2 ± 0.6 vs. 4.4 ± 0.4 ml min(-1) g(-1) in controls, P < 0.01). The ventilatory phenotypes associated with both inducible and constitutive inactivation of PHD2 were strongly compensated for by concomitant inactivation of HIF-2α, but not HIF-1α. Furthermore, inducible inactivation of HIF-2α strikingly impaired ventilatory acclimatisation to chronic hypoxia (HVRs: 4.1 ± 0.5 vs. 8.6 ± 0.5 ml min(-1) g(-1) in controls, P < 0.0001), as well as carotid body cell proliferation (400 ± 81 vs. 2630 ± 390 bromodeoxyuridine-positive cells mm(-2) in controls, P < 0.0001). The findings demonstrate the importance of the PHD2/HIF-2α enzyme-substrate couple in modulating ventilatory sensitivity to hypoxia.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Proliferación Celular , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Hipoxia/metabolismo , Ventilación Pulmonar , Factores de Transcripción/metabolismo , Animales , Cuerpo Carotídeo/citología , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/genética
5.
Pflugers Arch ; 468(1): 143-155, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26490460

RESUMEN

A functional role for the mitochondria in acute O2 sensing in the carotid body (CB) remains undetermined. Whilst total inhibition of mitochondrial activity causes intense CB stimulation, it is unclear whether this response can be moderated such that graded impairment of oxidative phosphorylation might be a mechanism that sets and modifies the O2 sensitivity of the whole organ. We assessed NADH autofluorescence and [Ca2+]i in freshly dissociated CB type I cells and sensory chemoafferent discharge frequency in an intact CB preparation, in the presence of varying concentrations of nitrite (NO2 −), a mitochondrial nitric oxide (NO) donor and a competitive inhibitor of mitochondrial complex IV. NO2 − increased CB type I cell NADH in a manner that was dose-dependent and rapidly reversible. Similar concentrations of NO2 − raised type I cell [Ca2+]i via L-type channels in a PO2-dependent manner and increased chemoafferent discharge frequency. Moderate inhibition of the CB mitochondria by NO2 − augmented chemoafferent discharge frequency during graded hypoxia, consistent with a heightened CB O2 sensitivity. Furthermore, NO2 − also exaggerated chemoafferent excitation during hypercapnia signifying an increase in CB CO2 sensitivity. These data show that NO2 − can moderate the hypoxia sensitivity of the CB and thus suggest that O2 sensitivity could be set and modified in this organ by interactions between NO and mitochondrial complex IV.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Mitocondrias/metabolismo , Oxígeno/metabolismo , Animales , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio , Cuerpo Carotídeo/citología , Hipoxia de la Célula , Células Cultivadas , Mitocondrias/efectos de los fármacos , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Óxido Nítrico/farmacología , Ratas
6.
Pflugers Arch ; 467(5): 1013-25, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25623783

RESUMEN

Arterial chemoreceptors play a vital role in cardiorespiratory control by providing the brain with information regarding blood oxygen, carbon dioxide, and pH. The main chemoreceptor, the carotid body, is composed of sensory (type 1) cells which respond to hypoxia or acidosis with a depolarising receptor potential which in turn activates voltage-gated calcium entry, neurosecretion and excitation of adjacent afferent nerves. The receptor potential is generated by inhibition of Twik-related acid-sensitive K(+) channel 1 and 3 (TASK1/TASK3) heterodimeric channels which normally maintain the cells' resting membrane potential. These channels are thought to be directly inhibited by acidosis. Oxygen sensitivity, however, probably derives from a metabolic signalling pathway. The carotid body, isolated type 1 cells, and all forms of TASK channel found in the type 1 cell, are highly sensitive to inhibitors of mitochondrial metabolism. Moreover, type1 cell TASK channels are activated by millimolar levels of MgATP. In addition to their role in the transduction of chemostimuli, type 1 cell TASK channels have also been implicated in the modulation of chemoreceptor function by a number of neurocrine/paracrine signalling molecules including adenosine, GABA, and serotonin. They may also be instrumental in mediating the depression of the acute hypoxic ventilatory response that occurs with some general anaesthetics. Modulation of TASK channel activity is therefore a key mechanism by which the excitability of chemoreceptors can be controlled. This is not only of physiological importance but may also offer a therapeutic strategy for the treatment of cardiorespiratory disorders that are associated with chemoreceptor dysfunction.


Asunto(s)
Acidosis/metabolismo , Calcio/metabolismo , Células Quimiorreceptoras/metabolismo , Oxígeno/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Humanos , Potenciales de la Membrana/fisiología
7.
Adv Exp Med Biol ; 860: 69-80, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26303469

RESUMEN

The identity of the oxygen sensor in arterial chemoreceptors has been the subject of much speculation. One of the oldest hypotheses is that oxygen is sensed through oxidative phosphorylation. There is a wealth of data demonstrating that arterial chemoreceptors are excited by inhibitors of oxidative phosphorylation. These compounds mimic the effects of hypoxia inhibiting TASK1/3 potassium channels causing membrane depolarisation calcium influx and neurosecretion. The TASK channels of Type-I cells are also sensitive to cytosolic MgATP. The existence of a metabolic signalling pathway in Type-1 cells is thus established; the contentious issue is whether this pathway is also used for acute oxygen sensing. The main criticism is that because cytochrome oxidase has a high affinity for oxygen (P50 ≈ 0.2 mmHg) mitochondrial metabolism should be insensitive to physiological hypoxia. This argument is however predicated on the assumption that chemoreceptor mitochondria are analogous to those of other tissues. We have however obtained new evidence to support the hypothesis that type-1 cell mitochondria are not like those of other cells in that they have an unusually low affinity for oxygen (Mills E, Jobsis FF, J Neurophysiol 35(4):405-428, 1972; Duchen MR, Biscoe TJ, J Physiol 450:13-31, 1992a). Our data confirm that mitochondrial membrane potential, NADH, electron transport and cytochrome oxidase activity in the Type-1 cell are all highly sensitive to hypoxia. These observations not only provide exceptionally strong support for the metabolic hypothesis but also reveal an unknown side of mitochondrial behaviour.


Asunto(s)
Cuerpo Carotídeo/fisiología , Mitocondrias/fisiología , Oxígeno/metabolismo , Animales , Cuerpo Carotídeo/citología , Humanos , Sulfuro de Hidrógeno/farmacología , Canales Iónicos/fisiología
8.
J Physiol ; 592(20): 4493-506, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25063821

RESUMEN

The view that the carotid body (CB) type I cells are direct physiological sensors of hypoglycaemia is challenged by the finding that the basal sensory neuronal outflow from the whole organ is unchanged in response to low glucose. The reason for this difference in viewpoint and how the whole CB maintains its metabolic integrity when exposed to low glucose is unknown. Here we show that, in the intact superfused rat CB, basal sensory neuronal activity was sustained during glucose deprivation for 29.1 ± 1.2 min, before irreversible failure following a brief period of excitation. Graded increases in the basal discharge induced by reducing the superfusate PO2 led to proportional decreases in the time to the pre-failure excitation during glucose deprivation which was dependent on a complete run-down in glycolysis and a fall in cellular energy status. A similar ability to withstand prolonged glucose deprivation was observed in isolated type I cells. Electron micrographs and immunofluorescence staining of rat CB sections revealed the presence of glycogen granules and the glycogen conversion enzymes glycogen synthase I and glycogen phosphorylase BB, dispersed throughout the type I cell cytoplasm. Furthermore, pharmacological attenuation of glycogenolysis and functional depletion of glycogen both significantly reduced the time to glycolytic run-down by ∼33 and 65%, respectively. These findings suggest that type I cell glycogen metabolism allows for the continuation of glycolysis and the maintenance of CB sensory neuronal output in periods of restricted glucose delivery and this may act as a key protective mechanism for the organ during hypoglycaemia. The ability, or otherwise, to preserve energetic status may thus account for variation in the reported capacity of the CB to sense physiological glucose concentrations and may even underlie its function during pathological states associated with augmented CB discharge.


Asunto(s)
Cuerpo Carotídeo/metabolismo , Glucosa/deficiencia , Glucógeno/metabolismo , Animales , Cuerpo Carotídeo/fisiología , Cuerpo Carotídeo/ultraestructura , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/ultraestructura , Glucosa/metabolismo , Glucogenólisis , Glucólisis , Masculino , Ratas , Ratas Wistar
9.
J Physiol ; 591(14): 3549-63, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23671162

RESUMEN

The mechanism of oxygen sensing in arterial chemoreceptors is unknown but has often been linked to mitochondrial function. A common criticism of this hypothesis is that mitochondrial function is insensitive to physiological levels of hypoxia. Here we investigate the effects of hypoxia (down to 0.5% O2) on mitochondrial function in neonatal rat type-1 cells. The oxygen sensitivity of mitochondrial [NADH] was assessed by monitoring autofluorescence and increased in hypoxia with a P50 of 15 mm Hg (1 mm Hg = 133.3 Pa) in normal Tyrode or 46 mm Hg in Ca(2+)-free Tyrode. Hypoxia also depolarised mitochondrial membrane potential (m, measured using rhodamine 123) with a P50 of 3.1, 3.3 and 2.8 mm Hg in normal Tyrode, Ca(2+)-free Tyrode and Tyrode containing the Ca(2+) channel antagonist Ni(2+), respectively. In the presence of oligomycin and low carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 75 nm) m is maintained by electron transport working against an artificial proton leak. Under these conditions hypoxia depolarised m/inhibited electron transport with a P50 of 5.4 mm Hg. The effects of hypoxia upon cytochrome oxidase activity were investigated using rotenone, myxothiazol, antimycin A, oligomycin, ascorbate and the electron donor tetramethyl-p-phenylenediamine. Under these conditions m is maintained by complex IV activity alone. Hypoxia inhibited cytochrome oxidase activity (depolarised m) with a P50 of 2.6 mm Hg. In contrast hypoxia had little or no effect upon NADH (P50 = 0.3 mm Hg), electron transport or cytochrome oxidase activity in sympathetic neurons. In summary, type-1 cell mitochondria display extraordinary oxygen sensitivity commensurate with a role in oxygen sensing. The reasons for this highly unusual behaviour are as yet unexplained.


Asunto(s)
Cuerpo Carotídeo/fisiología , Mitocondrias/fisiología , Oxígeno/fisiología , Animales , Animales Recién Nacidos , Calcio/fisiología , Arterias Carótidas/citología , Transporte de Electrón , Hipoxia/fisiopatología , Técnicas In Vitro , Potencial de la Membrana Mitocondrial , NAD/fisiología , Neuronas/fisiología , Ratas , Ganglio Cervical Superior/citología
10.
J Physiol ; 591(23): 5977-98, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24042502

RESUMEN

In rat arterial chemoreceptors, background potassium channels play an important role in maintaining resting membrane potential and promoting depolarization and excitation in response to hypoxia or acidosis. It has been suggested that these channels are a heterodimer of TASK-1 and TASK-3 based on their similarity to heterologously expressed TASK-1/3 fusion proteins. In this study, we sought to confirm the identity of these channels through germline ablation of Task-1 (Kcnk3) and Task-3 (Kcnk9) in mice. Background K-channels were abundant in carotid body type-1 cells from wild-type mice and comparable to those previously described in rat type-1 cells with a main conductance state of 33 pS. This channel was absent from both Task-1(-/-) and Task-3(-/-) cells. In its place we observed a larger (38 pS) K(+)-channel in Task-1(-/-) cells and a smaller (18 pS) K(+)-channel in Task-3(-/-) cells. None of these channels were observed in Task-1(-/-)/Task-3(-/-) double knock-out mice. We therefore conclude that the predominant background K-channel in wild-type mice is a TASK-1/TASK-3 heterodimer, whereas that in Task-1(-/-) mice is TASK-3 and, conversely, that in Task-3(-/-) mice is TASK-1. All three forms of TASK channel in type-1 cells were inhibited by hypoxia, cyanide and the uncoupler FCCP, but the greatest sensitivity was seen in TASK-1 and TASK-1/TASK-3 channels. In summary, the background K-channel in type-1 cells is predominantly a TASK-1/TASK-3 heterodimer. Although both TASK-1 and TASK-3 are able to couple to the oxygen and metabolism sensing pathways present in type-1 cells, channels containing TASK-1 appear to be more sensitive.


Asunto(s)
Cuerpo Carotídeo/citología , Mitocondrias/fisiología , Proteínas del Tejido Nervioso/fisiología , Oxígeno/fisiología , Canales de Potasio de Dominio Poro en Tándem/fisiología , Canales de Potasio/fisiología , Animales , Calcio/fisiología , Señalización del Calcio , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Ratones , Ratones Noqueados , Rotenona/farmacología , Cianuro de Sodio/farmacología
11.
J Physiol ; 591(14): 3565-77, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23690557

RESUMEN

Oxygen-dependent prolyl hydroxylation of hypoxia-inducible factor (HIF) by a set of closely related prolyl hydroxylase domain enzymes (PHD1, 2 and 3) regulates a range of transcriptional responses to hypoxia. This raises important questions about the role of these oxygen-sensing enzymes in integrative physiology. We investigated the effect of both genetic deficiency and pharmacological inhibition on the change in ventilation in response to acute hypoxic stimulation in mice. Mice exposed to chronic hypoxia for 7 days manifest an exaggerated hypoxic ventilatory response (HVR) (10.8 ± 0.3 versus 4.1 ± 0.7 ml min(-1) g(-1) in controls; P < 0.01). HVR was similarly exaggerated in PHD2(+/-) animals compared to littermate controls (8.4 ± 0.7 versus 5.0 ± 0.8 ml min(-1) g(-1); P < 0.01). Carotid body volume increased (0.0025 ± 0.00017 in PHD2(+/-) animals versus 0.0015 ± 0.00019 mm(3) in controls; P < 0.01). In contrast, HVR in PHD1(-/-) and PHD3(-/-) mice was similar to littermate controls. Acute exposure to a small molecule PHD inhibitor (PHI) (2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetic acid) did not mimic the ventilatory response to hypoxia. Further, 7 day administration of the PHI induced only modest increases in HVR and carotid body cell proliferation, despite marked stimulation of erythropoiesis. This was in contrast with chronic hypoxia, which elicited both exaggerated HVR and cellular proliferation. The findings demonstrate that PHD enzymes modulate ventilatory sensitivity to hypoxia and identify PHD2 as the most important enzyme in this response. They also reveal differences between genetic inactivation of PHDs, responses to hypoxia and responses to a pharmacological inhibitor, demonstrating the need for caution in predicting the effects of therapeutic modulation of the HIF hydroxylase system on different physiological responses.


Asunto(s)
Cuerpo Carotídeo/patología , Prolina Dioxigenasas del Factor Inducible por Hipoxia/fisiología , Hipoxia/fisiopatología , Ventilación Pulmonar/fisiología , Animales , Cuerpo Carotídeo/fisiopatología , Hiperplasia/fisiopatología , Factor 1 Inducible por Hipoxia/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
12.
Pflugers Arch ; 463(5): 743-54, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22419174

RESUMEN

It has been proposed that endogenous H(2)S mediates oxygen sensing in chemoreceptors; this study investigates the mechanisms by which H(2)S excites carotid body type 1 cells. H(2)S caused a rapid reversible increase in intracellular calcium with EC(50) ≈ 6 µM. This [Ca(2+)](i) response was abolished in Ca-free Tyrode. In perforated patch current clamp recordings, H(2)S depolarised type 1 cells from -59 to -35 mV; this was accompanied by a robust increase in [Ca(2+)](i). Voltage clamping at the resting membrane potential abolished the H(2)S-induced rise in [Ca(2+)](i). H(2)S inhibited background K(+) current in whole cell perforated patch and reduced background K(+) channel activity in cell-attached patch recordings. It is concluded that H(2)S excites type 1 cells through the inhibition of background (TASK) potassium channels leading to membrane depolarisation and voltage-gated Ca(2+) entry. These effects mimic those of hypoxia. H(2)S also inhibited mitochondrial function over a similar concentration range as assessed by NADH autofluorescence and measurement of intracellular magnesium (an index of decline in MgATP). Cyanide inhibited background K channels to a similar extent to H(2)S and prevented H(2)S exerting any further influence over channel activity. These data indicate that the effects of H(2)S on background K channels are a consequence of inhibition of oxidative phosphorylation. Whilst this does not preclude a role for endogenous H(2)S in oxygen sensing via the inhibition of cytochrome oxidase, the levels of H(2)S required raise questions as to the viability of such a mechanism.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Células Quimiorreceptoras/metabolismo , Sulfuro de Hidrógeno/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Calcio/metabolismo , Cuerpo Carotídeo/efectos de los fármacos , Cuerpo Carotídeo/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Hipoxia/metabolismo , Magnesio/metabolismo , Potenciales de la Membrana/efectos de los fármacos , NAD/metabolismo , Proteínas del Tejido Nervioso , Fosforilación Oxidativa/efectos de los fármacos , Oxígeno/metabolismo , Potasio/metabolismo , Canales de Potasio/metabolismo , Ratas
13.
Adv Exp Med Biol ; 661: 15-30, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20204721

RESUMEN

A number of tandem P-domain K(+)- channels (K(2)P) generate background K(+)-currents similar to those found in enteroreceptors that sense a diverse range of physiological stimuli including blood pH, carbon dioxide, oxygen, potassium and glucose. This review presents an overview of the properties of both cloned K(2)P tandem-P-domain K-channels and the endogenous chemosensitive background K-currents found in central chemoreceptors, peripheral chemoreceptors, the adrenal gland and the hypothalamus. Although the identity of many of these endogenous channels has yet to be confirmed they show striking similarities to a number of K(2)P channels especially those of the TASK subgroup. Moreover these channels seem often (albeit not exclusively) to be involved in pH and nutrient/metabolic sensing.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Glándulas Suprarrenales/citología , Glándulas Suprarrenales/metabolismo , Animales , Dióxido de Carbono/metabolismo , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Hipotálamo/citología , Hipotálamo/metabolismo , Oxígeno/metabolismo , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/clasificación , Canales de Potasio de Dominio Poro en Tándem/genética , Subunidades de Proteína/química , Subunidades de Proteína/clasificación , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
14.
Adv Exp Med Biol ; 669: 201-4, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20217349

RESUMEN

The purpose of this study was to ascertain if effects of halothane and sevoflurane (0.18-1.45 MAC) on the magnitude of the rise in intracellular calcium ([Ca(2+)]i with approximately 90s hypoxia (measured using indo-1 dye) in rat pup carotid body type I glomus cells. paralleled their known effects on the human hypoxic ventilatory response, where halothane is more depressive. We also assessed these agents' effect on [Ca(2+)]i response to 100 mM K(+). Halothane depressed the [Ca(2+])i transient in hypoxia more than sevoflurane (p = 0.036). Both agents also depressed the [Ca(2+)]i response to K+ - halothane more than sevoflurane (p = 0.004). These actions reflect their known influence on human hypoxic ventilatory response, consistent with the notion that the cellular process underlies the whole-body effect. The responses to K(+), which depolarises the cell membrane, indicates that in addition to a putative effect on K(+) channels, voltage-activated Ca(2+) channels may also be involved in the anaesthetic effect.


Asunto(s)
Calcio/metabolismo , Cuerpo Carotídeo/citología , Cuerpo Carotídeo/efectos de los fármacos , Halotano/farmacología , Hipoxia/metabolismo , Espacio Intracelular/efectos de los fármacos , Éteres Metílicos/farmacología , Anestésicos/farmacología , Animales , Relación Dosis-Respuesta a Droga , Espacio Intracelular/metabolismo , Ratas , Ratas Sprague-Dawley , Sevoflurano
15.
Adv Exp Med Biol ; 669: 209-12, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20217351

RESUMEN

In humans the ventilatory response to sustained isocapnic hypoxia is biphasic: after an initial rapid rise there follows a steady decline of the next 20-30 min termed hypoxic ventilatory decline (HVD). It is not known whether this secondary phase resides in a reducing activity of the peripheral or the central chemoreflex. We wished to assess if the Ca(2+) transient that occurs in glomus cells in response to hypoxia exhibits a form of HVD with sustained hypoxia that parallels the human ventilatory response, or if it exhibits a different response. Glomus cells enzymatically isolated from rat pups were exposed to 10 min sustained hypoxia (5% CO(2) in N(2)), asphyxia (20% CO(2) in N(2)), hypercapnia (20% CO(2) in air), 100 mM K+ and 2 mM Ba(2+). Intracellular Ca(2+) transients [Ca(2+)]i were measured using indo-1 dye. Hypoxia elicited rapid increase in [Ca(2+)]i followed by a gradual persistent decline over 10 min to 50% of the peak value. Asphyxia also elicited a biphasic response, with the acute response twice as great as that for hypoxia and the subsequent decline also twice as large occurring over a similar time course. Hypercapnia- and hyperkalaemia-evoked [Ca(2+)]i responses displayed a more rapid initial decline (within 2- min) but then stabilised. Exposure to Ba(2+) evoked characteristic spiking activity in the [Ca(2+)]i signal. Although the glomus cell shows some adaptation of response to a variety of stimuli, its response to hypoxia is characterized by a biphasic response with continued secondary decline in [Ca(2+)]i in a manner akin to HVD.


Asunto(s)
Calcio/metabolismo , Cuerpo Carotídeo/citología , Cuerpo Carotídeo/metabolismo , Hipoxia/metabolismo , Hipoxia/fisiopatología , Espacio Intracelular/metabolismo , Ventilación Pulmonar , Animales , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
16.
Adv Exp Med Biol ; 669: 205-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20217350

RESUMEN

We recently reported that volatile anaesthetics directly depress the isolated glomus cell response to hypoxia, halothane more so than sevoflurane, in a manner mimicking the action of these agents on the human hypoxic ventilatory response. We wished to extend these investigations to action of another agent (isoflurane), and we planned to examine the effects of this agent and halothane on background K(+) channels. In an isolated rat pup glomus cell preparation intracellular calcium [Ca(2+)]i (measured using indo-1 dye), halothane and isoflurane (0.45-2.73 MAC) depressed the Ca(2+) transient response to hypoxia (p = 0.028), halothane more than isoflurane (p < 0.001). Evaluating the effects of halothane, isoflurane (both 2.5 MAC) and hypoxia on the open probability of background TASK-like K(+) channels in cell attached patch recordings, halothane in euoxia strongly increased channel activity (2 fold) but isoflurane only increased activity by 50% (p < 0.001). In the presence of hypoxia halothane also increased channel activity (3 fold) while isoflurane again only had weak effects (p = 0.004). Thus there were marked differences between these agents on K(+) channel activity, comparable to their effects on the hypoxia induced Ca(2+) transient. When glomus cells were exposed to a depolarising stimulus using 100 mM K(+), both halothane and isoflurane modestly reduced the magnitude of the resulting Ca(2+) transient (by 44% and 10% respectively, p < 0.001). We conclude that the effect of volatile anaesthetics on the glomus cell response to hypoxia is mediated at least in part by their effect on background K(+) channels, and that this plausibly explains their whole-body effect. An additional effect on voltage-gated Ca(2+) is also possible.


Asunto(s)
Calcio/metabolismo , Cuerpo Carotídeo/citología , Halotano/farmacología , Hipoxia/metabolismo , Espacio Intracelular/efectos de los fármacos , Isoflurano/farmacología , Canales de Potasio/metabolismo , Animales , Cuerpo Carotídeo/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Espacio Intracelular/metabolismo , Ratas , Ratas Sprague-Dawley
17.
J Clin Invest ; 130(5): 2237-2251, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31999648

RESUMEN

Hypoxia-inducible factor (HIF) is strikingly upregulated in many types of cancer, and there is great interest in applying inhibitors of HIF as anticancer therapeutics. The most advanced of these are small molecules that target the HIF-2 isoform through binding the PAS-B domain of HIF-2α. These molecules are undergoing clinical trials with promising results in renal and other cancers where HIF-2 is considered to be driving growth. Nevertheless, a central question remains as to whether such inhibitors affect physiological responses to hypoxia at relevant doses. Here, we show that pharmacological HIF-2α inhibition with PT2385, at doses similar to those reported to inhibit tumor growth, rapidly impaired ventilatory responses to hypoxia, abrogating both ventilatory acclimatization and carotid body cell proliferative responses to sustained hypoxia. Mice carrying a HIF-2α PAS-B S305M mutation that disrupts PT2385 binding, but not dimerization with HIF-1ß, did not respond to PT2385, indicating that these effects are on-target. Furthermore, the finding of a hypomorphic ventilatory phenotype in untreated HIF-2α S305M mutant mice suggests a function for the HIF-2α PAS-B domain beyond heterodimerization with HIF-1ß. Although PT2385 was well tolerated, the findings indicate the need for caution in patients who are dependent on hypoxic ventilatory drive.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Hipoxia/metabolismo , Indanos/farmacología , Mutación Missense , Sulfonas/farmacología , Sustitución de Aminoácidos , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipoxia/tratamiento farmacológico , Hipoxia/genética , Hipoxia/patología , Ratones , Ratones Mutantes
18.
Pflugers Arch ; 459(1): 159-81, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19806360

RESUMEN

Ischaemia excites sensory neurones (generating pain) and promotes calcitonin gene-related peptide release from nerve endings. Acidosis is thought to play a key role in mediating excitation via the activation of proton-sensitive cation channels. In this study, we investigated the effects of acidosis upon Ca2+ signalling in sensory neurones from rat dorsal root ganglia. Both hypercapnic (pHo 6.8) and metabolic-hypercapnic (pHo 6.2) acidosis caused a biphasic increase in cytosolic calcium concentration ([Ca2+] i ). This comprised a brief Ca2+ transient (half-time approximately 30 s) caused by Ca2+ influx followed by a sustained rise in [Ca2+] i due to Ca2+ release from caffeine and cyclopiazonic acid-sensitive internal stores. Acid-evoked Ca2+ influx was unaffected by voltage-gated Ca2+-channel inhibition with nickel and acid sensing ion channel (ASIC) inhibition with amiloride but was blocked by inhibition of transient receptor potential vanilloid receptors (TRPV1) with (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide (AMG 9810; 1 microM) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropryazine-1(2H)-carbox-amide (BCTC; 1 microM). Combining acidosis with anoxia and aglycaemia increased the amplitude of both phases of Ca2+ elevation and prolonged the Ca2+ transient. The Ca2+ transient evoked by combined acidosis, aglycaemia and anoxia was also substantially blocked by AMG 9810 and BCTC and, to a lesser extent, by amiloride. In summary, the principle mechanisms mediating increase in [Ca2+] i in response to acidosis are a brief Ca2+ influx through TRPV1 followed by sustained Ca2+ release from internal stores. These effects are potentiated by anoxia and aglycaemia, conditions also prevalent in ischaemia. The effects of anoxia and aglycaemia are suggested to be largely due to the inhibition of Ca2+-clearance mechanisms and possible increase in the role of ASICs.


Asunto(s)
Acidosis/metabolismo , Señalización del Calcio/fisiología , Hipoxia/metabolismo , Células Receptoras Sensoriales/metabolismo , Canales Catiónicos TRPV/metabolismo , Acidosis/fisiopatología , Animales , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/fisiopatología , Hipoxia/fisiopatología , Masculino , Potenciales de la Membrana/fisiología , Microscopía Fluorescente , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
19.
Respir Physiol Neurobiol ; 260: 17-27, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30389452

RESUMEN

In humans the intravenous anaesthetic propofol depresses ventilatory responses to hypoxia and CO2. Animal studies suggest that this may in part be due to inhibition of synaptic transmission between chemoreceptor glomus cells of the carotid body and the afferent carotid sinus nerve. It is however unknown if propofol can also act directly on the glomus cell. Here we report that propofol can indeed inhibit intracellular Ca2+ responses to hypoxia and hypercapnia in isolated rat glomus cells. Neither this propofol effect, nor the glomus cell response to hypoxia in the absence of propofol, were influenced by GABA receptor activation (using GABA, muscimol and baclofen) or inhibition (using bicuculline and 5-aminovaleric acid). Suggesting that these effects of propofol are not mediated through GABA receptors. Propofol inhibited calcium responses to nicotine in glomus cells but the nicotinic antagonists vecuronium and methyllycaconitine did not inhibit calcium responses to hypoxia. TASK channel activity was not altered by propofol. The glomus cell Ca2+ response to depolarisation with 30 mM K+ was however modestly inhibited by propofol. In summary we conclude that propofol does have a direct effect upon hypoxia signalling in isolated type-1 cells and that this may be partially due to its ability to inhibit voltage gated Ca2+v channels. We also note that propofol has the capacity to supress glomus cell excitation via nicotinic receptors and may therefore also interfere with paracrine/autocrine cholinergic signalling in the intact organ. The effects of propofol on chemoreceptor function are however clearly complex and require further investigation.


Asunto(s)
Cuerpo Carotídeo/citología , Hipoxia de la Célula/efectos de los fármacos , Células Quimiorreceptoras/efectos de los fármacos , Hipercapnia/patología , Hipnóticos y Sedantes/farmacología , Propofol/farmacología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Dióxido de Carbono/farmacología , Cuerpo Carotídeo/crecimiento & desarrollo , Colinérgicos/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , GABAérgicos/farmacología , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Potasio/farmacología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA