Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Alzheimers Dement ; 19(8): 3350-3364, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36790009

RESUMEN

INTRODUCTION: This study employed an integrative system and causal inference approach to explore molecular signatures in blood and CSF, the amyloid/tau/neurodegeneration [AT(N)] framework, mild cognitive impairment (MCI) conversion to Alzheimer's disease (AD), and genetic risk for AD. METHODS: Using the European Medical Information Framework (EMIF)-AD cohort, we measured 696 proteins in cerebrospinal fluid (n = 371), 4001 proteins in plasma (n = 972), 611 metabolites in plasma (n = 696), and genotyped whole-blood (7,778,465 autosomal single nucleotide epolymorphisms, n = 936). We investigated associations: molecular modules to AT(N), module hubs with AD Polygenic Risk scores and APOE4 genotypes, molecular hubs to MCI conversion and probed for causality with AD using Mendelian randomization (MR). RESULTS: AT(N) framework associated with protein and lipid hubs. In plasma, Proprotein Convertase Subtilisin/Kexin Type 7 showed evidence for causal associations with AD. AD was causally associated with Reticulocalbin 2 and sphingomyelins, an association driven by the APOE isoform. DISCUSSION: This study reveals multi-omics networks associated with AT(N) and causal AD molecular candidates.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Péptidos beta-Amiloides/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo , Multiómica , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Fragmentos de Péptidos/líquido cefalorraquídeo
2.
Hum Mol Genet ; 28(19): 3309-3322, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31294445

RESUMEN

The Finnish-variant late infantile neuronal ceroid lipofuscinosis, also known as CLN5 disease, is caused by mutations in the CLN5 gene. Cln5 is strongly expressed in the developing brain and expression continues into adulthood. CLN5, a protein of unknown function, is implicated in neurodevelopment but detailed investigation is lacking. Using Cln5-/- embryos of various ages and cells harvested from Cln5-/- brains we investigated the hitherto unknown role of Cln5 in the developing brain. Loss of Cln5 results in neuronal differentiation deficits and delays in interneuron development during in utero period. Specifically, the radial thickness of dorsal telencephalon was significantly decreased in Cln5-/- mouse embryos at embryonic day 14.5 (E14.5), and expression of Tuj1, an important neuronal marker during development, was down-regulated. An interneuron marker calbindin and a mitosis marker p-H3 showed down-regulation in ganglionic eminences. Neurite outgrowth was compromised in primary cortical neuronal cultures derived from E16 Cln5-/- embryos compared with WT embryos. We show that the developmental deficits of interneurons may be linked to increased levels of the repressor element 1-silencing transcription factor, which we report to bind to glutamate decarboxylase (Gad1), which encodes GAD67, a rate-limiting enzyme in the production of gamma-aminobutyric acid (GABA). Indeed, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons. Furthermore, adult Cln5-/- mice presented deficits in hippocampal parvalbumin-positive interneurons and showed age-independent cortical hyper excitability as measured by electroencephalogram and auditory-evoked potentials. This study highlights the importance of Cln5 in neurodevelopment and suggests that in contrast to earlier reports, CLN5 disease is likely to develop during embryonic stages.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Glutamato Descarboxilasa/genética , Interneuronas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Lipofuscinosis Ceroideas Neuronales/genética , Animales , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular , Células Cultivadas , Embrión de Mamíferos/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , Lipofuscinosis Ceroideas Neuronales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Parvalbúminas/metabolismo , Proteínas Represoras/genética , Tubulina (Proteína)/metabolismo
3.
Mol Cell Neurosci ; 103: 103463, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31917333

RESUMEN

Endocannabinoids regulate different aspects of neurodevelopment. In utero exposure to the exogenous psychoactive cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC), has been linked with abnormal cortical development in animal models. However, much less is known about the actions of endocannabinoids in human neurons. Here we investigated the effect of the endocannabinoid 2-arachidonoyl glycerol (2AG) and Δ9-THC on the development of neuronal morphology and activation of signaling kinases, in cortical neurons derived from human induced pluripotent stem cells (hiPSCs). Our data indicate that the cannabinoid type 1 receptor (CB1R), but not the cannabinoid 2 receptor (CB2R), GPR55 or TRPV1 receptors, is expressed in young, immature hiPSC-derived cortical neurons. Consistent with previous reports, 2AG and Δ9-THC negatively regulated neurite outgrowth. Interestingly, acute exposure to both 2AG and Δ9-THC inhibited phosphorylation of serine/threonine kinase extracellular signal-regulated protein kinases (ERK1/2), whereas Δ9-THC also reduced phosphorylation of Akt (aka PKB). Moreover, the CB1R inverse agonist SR 141716A attenuated the decrease in neurite outgrowth and ERK1/2 phosphorylation induced by 2AG and Δ9-THC. Taken together, our data suggest that hiPSC-derived cortical neurons express CB1Rs and are responsive to exogenous cannabinoids. Thus, hiPSC-neurons may represent a good cellular model for investigating the role of the endocannabinoid system in regulating cellular processes in developing human neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Rimonabant/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Dronabinol/metabolismo , Dronabinol/farmacología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo
4.
Alzheimers Dement ; 17(9): 1452-1464, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33792144

RESUMEN

INTRODUCTION: This study sought to discover and replicate plasma proteomic biomarkers relating to Alzheimer's disease (AD) including both the "ATN" (amyloid/tau/neurodegeneration) diagnostic framework and clinical diagnosis. METHODS: Plasma proteins from 972 subjects (372 controls, 409 mild cognitive impairment [MCI], and 191 AD) were measured using both SOMAscan and targeted assays, including 4001 and 25 proteins, respectively. RESULTS: Protein co-expression network analysis of SOMAscan data revealed the relation between proteins and "N" varied across different neurodegeneration markers, indicating that the ATN variants are not interchangeable. Using hub proteins, age, and apolipoprotein E ε4 genotype discriminated AD from controls with an area under the curve (AUC) of 0.81 and MCI convertors from non-convertors with an AUC of 0.74. Targeted assays replicated the relation of four proteins with the ATN framework and clinical diagnosis. DISCUSSION: Our study suggests that blood proteins can predict the presence of AD pathology as measured in the ATN framework as well as clinical diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/sangre , Biomarcadores/sangre , Proteínas Sanguíneas , Proteómica , Proteínas tau/sangre , Anciano , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/patología , Apolipoproteína E4/sangre , Apolipoproteína E4/genética , Disfunción Cognitiva/sangre , Disfunción Cognitiva/patología , Europa (Continente) , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Mol Cell ; 43(5): 843-50, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21884984

RESUMEN

Neurogenesis requires the concerted action of numerous genes that are regulated at multiple levels. However, how different layers of gene regulation are coordinated to promote neurogenesis is not well understood. We show that the neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100/SRRM4) negatively regulates REST (NRSF), a transcriptional repressor of genes required for neurogenesis. nSR100 directly promotes alternative splicing of REST transcripts to produce a REST isoform (REST4) with greatly reduced repressive activity, thereby activating expression of REST targets in neural cells. Conversely, REST directly represses nSR100 in nonneural cells to prevent the activation of neural-specific splicing events. Consistent with a critical role for nSR100 in the inhibition of REST activity, blocking nSR100 expression in the developing mouse brain impairs neurogenesis. Our results thus reveal a fundamental role for direct regulatory interactions between a splicing activator and transcription repressor in the control of the multilayered regulatory programs required for neurogenesis.


Asunto(s)
Empalme Alternativo , Neurogénesis , Factores de Transcripción/genética , Animales , Células Cultivadas , Ratones , Ratones Endogámicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Empalme del ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética
6.
Alzheimers Dement ; 15(11): 1478-1488, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31495601

RESUMEN

INTRODUCTION: Plasma proteins have been widely studied as candidate biomarkers to predict brain amyloid deposition to increase recruitment efficiency in secondary prevention clinical trials for Alzheimer's disease. Most such biomarker studies are targeted to specific proteins or are biased toward high abundant proteins. METHODS: 4001 plasma proteins were measured in two groups of participants (discovery group = 516, replication group = 365) selected from the European Medical Information Framework for Alzheimer's disease Multimodal Biomarker Discovery study, all of whom had measures of amyloid. RESULTS: A panel of proteins (n = 44), along with age and apolipoprotein E (APOE) ε4, predicted brain amyloid deposition with good performance in both the discovery group (area under the curve = 0.78) and the replication group (area under the curve = 0.68). Furthermore, a causal relationship between amyloid and tau was confirmed by Mendelian randomization. DISCUSSION: The results suggest that high-dimensional plasma protein testing could be a useful and reproducible approach for measuring brain amyloid deposition.


Asunto(s)
Enfermedad de Alzheimer , Amiloide/metabolismo , Biomarcadores/sangre , Encéfalo/metabolismo , Proteómica , Factores de Edad , Anciano , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Europa (Continente) , Femenino , Humanos , Masculino , Persona de Mediana Edad
7.
Genes Dev ; 25(9): 930-45, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21536733

RESUMEN

Proneural genes such as Ascl1 are known to promote cell cycle exit and neuronal differentiation when expressed in neural progenitor cells. The mechanisms by which proneural genes activate neurogenesis--and, in particular, the genes that they regulate--however, are mostly unknown. We performed a genome-wide characterization of the transcriptional targets of Ascl1 in the embryonic brain and in neural stem cell cultures by location analysis and expression profiling of embryos overexpressing or mutant for Ascl1. The wide range of molecular and cellular functions represented among these targets suggests that Ascl1 directly controls the specification of neural progenitors as well as the later steps of neuronal differentiation and neurite outgrowth. Surprisingly, Ascl1 also regulates the expression of a large number of genes involved in cell cycle progression, including canonical cell cycle regulators and oncogenic transcription factors. Mutational analysis in the embryonic brain and manipulation of Ascl1 activity in neural stem cell cultures revealed that Ascl1 is indeed required for normal proliferation of neural progenitors. This study identified a novel and unexpected activity of the proneural gene Ascl1, and revealed a direct molecular link between the phase of expansion of neural progenitors and the subsequent phases of cell cycle exit and neuronal differentiation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Telencéfalo/citología , Telencéfalo/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Línea Celular , Proliferación Celular , Células Cultivadas , Femenino , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Ratones , Embarazo
8.
J Neurol Neurosurg Psychiatry ; 89(9): 962-969, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29459380

RESUMEN

In our ageing population, neurodegenerative disorders carry an enormous personal, societal and economic burden. Although neurodegenerative diseases are often thought of as clinicopathological entities, increasing evidence suggests a considerable overlap in the molecular underpinnings of their pathogenesis. Such overlapping biological processes include the handling of misfolded proteins, defective organelle trafficking, RNA processing, synaptic health and neuroinflammation. Collectively but in different proportions, these biological processes in neurons or non-neuronal cells lead to regionally distinct patterns of neuronal vulnerability and progression of pathology that could explain the disease symptomology. With the advent of patient-derived cellular models and novel genetic manipulation tools, we are now able to interrogate this commonality despite the cellular complexity of the brain in order to develop novel therapeutic strategies to prevent or arrest neurodegeneration. Here, we describe broadly these concepts and their relevance across neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Humanos , Enfermedades Neurodegenerativas/metabolismo
9.
Stem Cells ; 34(1): 124-34, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26507573

RESUMEN

The transcription factor REST is a key suppressor of neuronal genes in non-neuronal tissues. REST has been shown to suppress proneuronal microRNAs in neural progenitors indicating that REST-mediated neurogenic suppression may act in part via microRNAs. We used neural differentiation of Rest-null mouse ESC to identify dozens of microRNAs regulated by REST during neural development. One of the identified microRNAs, miR-375, was upregulated during human spinal motor neuron development. We found that miR-375 facilitates spinal motor neurogenesis by targeting the cyclin kinase CCND2 and the transcription factor PAX6. Additionally, miR-375 inhibits the tumor suppressor p53 and protects neurons from apoptosis in response to DNA damage. Interestingly, motor neurons derived from a spinal muscular atrophy patient displayed depressed miR-375 expression and elevated p53 protein levels. Importantly, SMA motor neurons were significantly more susceptible to DNA damage induced apoptosis suggesting that miR-375 may play a protective role in motor neurons.


Asunto(s)
MicroARNs/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Degeneración Nerviosa/patología , Animales , Apoptosis/genética , Secuencia de Bases , Humanos , Ratones , MicroARNs/metabolismo , Datos de Secuencia Molecular , Atrofia Muscular Espinal/genética , Degeneración Nerviosa/genética , Neurogénesis/genética , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/metabolismo
10.
Stem Cells ; 34(4): 860-72, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26864965

RESUMEN

During development, lineage specification is controlled by several signaling pathways involving various transcription factors (TFs). Here, we studied the RE-1-silencing transcription factor (REST) and identified an important role of this TF in cardiac differentiation. Using mouse embryonic stem cells (ESC) to model development, we found that REST knockout cells lost the ability to differentiate into the cardiac lineage. Detailed analysis of specific lineage markers expression showed selective downregulation of endoderm markers in REST-null cells, thus contributing to a loss of cardiogenic signals. REST regulates cardiac differentiation of ESCs by negatively regulating the Wnt/ß-catenin signaling pathway and positively regulating the cardiogenic TF Gata4. We propose here a new role for REST in cell fate specification besides its well-known repressive role of neuronal differentiation.


Asunto(s)
Diferenciación Celular/genética , Factor de Transcripción GATA4/biosíntesis , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Represoras/genética , Animales , Linaje de la Célula/genética , Factor de Transcripción GATA4/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Vía de Señalización Wnt
11.
J Neurosci Res ; 93(8): 1203-14, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25691247

RESUMEN

Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate.


Asunto(s)
Células Madre Adultas/fisiología , Silenciador del Gen/fisiología , Ventrículos Laterales/citología , Ventrículos Laterales/fisiología , Células-Madre Neurales/fisiología , Proteínas Represoras/fisiología , Animales , Proteína Morfogenética Ósea 6/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Humanos , Masculino , Ratones , Factores de Transcripción/fisiología
12.
Stem Cells ; 32(6): 1367-72, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24448890

RESUMEN

Cellular reprogramming can offer valuable insight into disease mechanism and has the potential to provide novel tools for regenerative medicine. Yet it remains an inefficient and often incomplete process. However, experiments show that almost all somatic cells eventually give rise to the pluripotent state, albeit at different latencies, as long as expression of reprogramming transcription factors is maintained. Furthermore, it appears that specific subpopulations of cells can be identified that show enhanced propensities to be reprogrammed to the pluripotent state. It has been proposed that an initial stochastic process is responsible for this initial priming that is followed by a deterministic process that directs the primed cells into the pluripotent state. Here, we propose a population shift view of cellular reprogramming, which explains these observations and reconciles the stochastic and deterministic nature of this process. According to this view, a small population of cells, whose states are closer to the pluripotent state and reside in pre-existing energetically favorable trajectories, will be initially selected for reprogramming. Moreover, by maintaining ectopic expression of reprogramming factors, other cells enter these pathways as a result of transcriptional and epigenetic stochastic variations. Consequently, increasing numbers of cells reach the pluripotent state, and the cell population distribution shifts toward this state. Importantly, additional perturbations can change the epigenetic landscape, allowing cells more access to the reprogramming trajectories, thereby increasing reprogramming efficiency. Knowledge of the initial cellular subpopulations and pathways of states that lead to the final cellular state should allow us to design alternative perturbation strategies to improve reprogramming efficiency and fidelity.


Asunto(s)
Reprogramación Celular , Modelos Biológicos , Animales , Proliferación Celular , Humanos
13.
Nature ; 457(7233): E5-6; discussion E7, 2009 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-19242418

RESUMEN

Establishment and maintenance of the pluripotent state of ESCs is a key issue in stem cell biology and regenerative medicine, and consequently identification of transcription factors that regulate ESC pluripotency is an important goal. Singh et al. claim that the transcriptional repressor REST is such a regulator and that a 50% reduction of REST in ESCs leads to activation of a specific microRNA, miR-21, and that this subsequently results in loss of pluripotency markers and a reciprocal gain in some lineage-specific differentiation markers. In contrast, we show that, in haplodeficient Rest(+/-) ESCs, we detected no change in pluripotency markers, no precocious expression of differentiated neuronal markers and no interaction of REST with miR-21. It is vital that identification of factors that regulate pluripotency is based on robust, consistent data, and the contrast in data reported here undermines the claim by Singh et al. that REST is such a regulator.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Reacción en Cadena de la Polimerasa , Proteínas Represoras/genética , Reproducibilidad de los Resultados
14.
Stem Cells ; 31(9): 1868-80, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23712654

RESUMEN

A cardinal property of neural stem cells (NSCs) is their ability to adopt multiple fates upon differentiation. The epigenome is widely seen as a read-out of cellular potential and a manifestation of this can be seen in embryonic stem cells (ESCs), where promoters of many lineage-specific regulators are marked by a bivalent epigenetic signature comprising trimethylation of both lysine 4 and lysine 27 of histone H3 (H3K4me3 and H3K27me3, respectively). Bivalency has subsequently emerged as a powerful epigenetic indicator of stem cell potential. Here, we have interrogated the epigenome during differentiation of ESC-derived NSCs to immature GABAergic interneurons. We show that developmental transitions are accompanied by loss of bivalency at many promoters in line with their increasing developmental restriction from pluripotent ESC through multipotent NSC to committed GABAergic interneuron. At the NSC stage, the promoters of genes encoding many transcriptional regulators required for differentiation of multiple neuronal subtypes and neural crest appear to be bivalent, consistent with the broad developmental potential of NSCs. Upon differentiation to GABAergic neurons, all non-GABAergic promoters resolve to H3K27me3 monovalency, whereas GABAergic promoters resolve to H3K4me3 monovalency or retain bivalency. Importantly, many of these epigenetic changes occur before any corresponding changes in gene expression. Intriguingly, another group of gene promoters gain bivalency as NSCs differentiate toward neurons, the majority of which are associated with functions connected with maturation and establishment and maintenance of connectivity. These data show that bivalency provides a dynamic epigenetic signature of developmental potential in both NSCs and in early neurons.


Asunto(s)
Epigénesis Genética , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular/genética , Linaje de la Célula/genética , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Ratones , Datos de Secuencia Molecular , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
15.
Neuro Oncol ; 26(2): 309-322, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-37716001

RESUMEN

BACKGROUND: Effective control of brain metastasis remains an urgent clinical need due a limited understanding of the mechanisms driving it. Although the gain of neuro-adaptive attributes in breast-to-brain metastases (BBMs) has been described, the mechanisms that govern this neural acclimation and the resulting brain metastasis competency are poorly understood. Herein, we define the role of neural-specific splicing factor Serine/Arginine Repetitive Matrix Protein 4 (SRRM4) in regulating microenvironmental adaptation and brain metastasis colonization in breast cancer cells. METHODS: Utilizing pure neuronal cultures and brain-naive and patient-derived BM tumor cells, along with in vivo tumor modeling, we surveyed the early induction of mediators of neural acclimation in tumor cells. RESULTS: When SRRM4 is overexpressed in systemic breast cancer cells, there is enhanced BBM leading to poorer overall survival in vivo. Concomitantly, SRRM4 knockdown expression does not provide any advantage in central nervous system metastasis. In addition, reducing SRRM4 expression in breast cancer cells slows down proliferation and increases resistance to chemotherapy. Conversely, when SRRM4/REST4 levels are elevated, tumor cell growth is maintained even in nutrient-deprived conditions. In neuronal coculture, decreasing SRRM4 expression in breast cancer cells impairs their ability to adapt to the brain microenvironment, while increasing SRRM4/RE-1 Silencing Transcription Factor (REST4) levels leads to greater expression of neurotransmitter and synaptic signaling mediators and a significant colonization advantage. CONCLUSIONS: Collectively, our findings identify SRRM4 as a regulator of brain metastasis colonization, and a potential therapeutic target in breast cancer.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Encefálicas/secundario , Neuronas/patología , Línea Celular Tumoral , Microambiente Tumoral
16.
Comput Biol Med ; 176: 108588, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761503

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative condition for which there is currently no available medication that can stop its progression. Previous studies suggest that mild cognitive impairment (MCI) is a phase that precedes the disease. Therefore, a better understanding of the molecular mechanisms behind MCI conversion to AD is needed. METHOD: Here, we propose a machine learning-based approach to detect the key metabolites and proteins involved in MCI progression to AD using data from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery Study. Proteins and metabolites were evaluated separately in multiclass models (controls, MCI and AD) and together in MCI conversion models (MCI stable vs converter). Only features selected as relevant by 3/4 algorithms proposed were kept for downstream analysis. RESULTS: Multiclass models of metabolites highlighted nine features further validated in an independent cohort (0.726 mean balanced accuracy). Among these features, one metabolite, oleamide, was selected by all the algorithms. Further in-vitro experiments in rodents showed that disease-associated microglia excreted oleamide in vesicles. Multiclass models of proteins stood out with nine features, validated in an independent cohort (0.720 mean balanced accuracy). However, none of the proteins was selected by all the algorithms. Besides, to distinguish between MCI stable and converters, 14 key features were selected (0.872 AUC), including tTau, alpha-synuclein (SNCA), junctophilin-3 (JPH3), properdin (CFP) and peptidase inhibitor 15 (PI15) among others. CONCLUSIONS: This omics integration approach highlighted a set of molecules associated with MCI conversion important in neuronal and glia inflammation pathways.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Lipidómica , Proteómica , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Disfunción Cognitiva/sangre , Disfunción Cognitiva/metabolismo , Humanos , Proteómica/métodos , Masculino , Anciano , Femenino , Lipidómica/métodos , Biomarcadores/sangre , Biomarcadores/metabolismo , Animales , Progresión de la Enfermedad , Aprendizaje Automático , Anciano de 80 o más Años
17.
J Neurochem ; 124(3): 418-30, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23145961

RESUMEN

Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/patología , Proteínas Nucleares/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/fisiología , Animales , Células Cultivadas , Cuerpo Estriado/citología , Regulación de la Expresión Génica/fisiología , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Humanos , Proteína Huntingtina , Enfermedad de Huntington/patología , Ratones , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Proteínas Nucleares/genética , ARN Interferente Pequeño/genética , Proteínas Represoras/genética
18.
J Neurochem ; 127(1): 22-35, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23800350

RESUMEN

Transcriptional dysregulation is a hallmark of Huntington's disease (HD) and one cause of this dysregulation is enhanced activity of the REST-mSIN3a-mSIN3b-CoREST-HDAC repressor complex, which silences transcription through REST binding to the RE1/NRSE silencer. Normally, huntingtin (HTT) prevents this binding, allowing expressing of REST target genes. Here, we aimed to identify HTT mimetics that disrupt REST complex formation in HD. From a structure-based virtual screening of 7 million molecules, we selected 94 compounds predicted to interfere with REST complex formation by targeting the PAH1 domain of mSIN3b. Primary screening using DiaNRSELuc8 cells revealed two classes of compounds causing a greater than two-fold increase in luciferase. In particular, quinolone-like compound 91 (C91) at a non-toxic nanomolar concentration reduced mSIN3b nuclear entry and occupancy at the RE1/NRSE within the Bdnf locus, and restored brain-derived neurotrophic factor (BDNF) protein levels in HD cells. The mRNA levels of other RE1/NRSE-regulated genes were similarly increased while non-REST-regulated genes were unaffected. C91 stimulated REST-regulated gene expression in HTT-knockdown Zebrafish and increased BDNF mRNA in the presence of mutant HTT. Thus, a combination of virtual screening and biological approaches can lead to compounds reducing REST complex formation, which may be useful in HD and in other pathological conditions.


Asunto(s)
Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transcripción Genética/fisiología , Animales , Animales Modificados Genéticamente , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proliferación Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Proteínas Co-Represoras , Embrión no Mamífero , Ensayo de Inmunoadsorción Enzimática , Humanos , Proteína Huntingtina , Inmunohistoquímica , Luciferasas/metabolismo , Microinyecciones , Modelos Moleculares , Proteínas del Tejido Nervioso/biosíntesis , Reacción en Cadena de la Polimerasa , ARN Mensajero/administración & dosificación , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transcripción Genética/genética , Transfección , Pez Cebra
19.
Stem Cells ; 30(3): 425-34, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22162260

RESUMEN

Neural differentiation of embryonic stem cells (ESCs) requires coordinated repression of the pluripotency regulatory program and reciprocal activation of the neurogenic regulatory program. Upon neural induction, ESCs rapidly repress expression of pluripotency genes followed by staged activation of neural progenitor and differentiated neuronal and glial genes. The transcriptional factors that underlie maintenance of pluripotency are partially characterized whereas those underlying neural induction are much less explored, and the factors that coordinate these two developmental programs are completely unknown. One transcription factor, REST (repressor element 1 silencing transcription factor), has been linked with terminal differentiation of neural progenitors and more recently, and controversially, with control of pluripotency. Here, we show that in the absence of REST, coordination of pluripotency and neural induction is lost and there is a resultant delay in repression of pluripotency genes and a precocious activation of both neural progenitor and differentiated neuronal and glial genes. Furthermore, we show that REST is not required for production of radial glia-like progenitors but is required for their subsequent maintenance and differentiation into neurons, oligodendrocytes, and astrocytes. We propose that REST acts as a regulatory hub that coordinates timely repression of pluripotency with neural induction and neural differentiation.


Asunto(s)
Células Madre Embrionarias/fisiología , Neurogénesis , Células Madre Pluripotentes/fisiología , Proteínas Represoras/fisiología , Animales , Benzamidas/farmacología , Diferenciación Celular , Dioxoles/farmacología , Células Madre Embrionarias/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Células Madre Pluripotentes/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
20.
Stem Cells ; 30(1): 2-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22162299

RESUMEN

To celebrate 30 years of peer-reviewed publication of cutting edge stem cell research in Stem Cells, the first journal devoted to this promising field, we pause to review how far we have come in the three-decade lifetime of the Journal. To do this, we will present our views of the 10 most significant developments that have advanced stem cell biology where it is today. With the increasing rate of new data, it is natural that the bulk of these developments would have occurred in recent years, but we must not think that stem cell biology is a young science. The idea of a stem cell has actually been around for quite a long time having appeared in the scientific literature as early as 1868 with Haeckels' concept of a stamzelle as an uncommitted or undifferentiated cell responsible for producing many types of new cells to repair the body [Naturliche Schopfungsgeschichte, 1868; Berlin: Georg Reimer] but it took many years to obtain hard evidence in support of this theory. Not until the work of James Till and Ernest McCulloch in the 1960s did we have proof of the existence of stem cells and until the derivation of embryonal carcinoma cells in the 1960s-1970s and the first embryonic stem cell in 1981, such adult or tissue-specific stem cells were the only known class. The first issue of Stem Cells was published in 1981; no small wonder that most of its papers were devoted to hematopoietic progenitors. More recently, induced pluripotent stem cells (iPSCs) have been developed, and this is proving to be a fertile area of investigation as shown by the volume of publications appearing not only in Stem Cells but also in other journals over the last 5 years. The reader will note that many of the articles in this special issue are concerned with iPSC; however, this reflects the current surge of interest in the topic rather than any deliberate attempt to ignore other areas of stem cell investigation.


Asunto(s)
Investigación con Células Madre/historia , Células Madre Adultas/citología , Animales , Diferenciación Celular/fisiología , Clonación de Organismos , Células Madre Embrionarias/citología , Células Madre Hematopoyéticas/citología , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Ratones , Células Madre Neoplásicas/citología , Publicaciones Periódicas como Asunto/historia , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA