Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genome Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38955465

RESUMEN

Recent advances in genomics, coupled with a unique population structure and remarkable levels of variation, have propelled the domestic dog to new levels as a system for understanding fundamental principles in mammalian biology. Central to this advance are more than 350 recognized breeds, each a closed population that has undergone selection for unique features. Genetic variation in the domestic dog is particularly well characterized compared with other domestic mammals, with almost 3000 high-coverage genomes publicly available. Importantly, as the number of sequenced genomes increases, new avenues for analysis are becoming available. Herein, we discuss recent discoveries in canine genomics regarding behavior, morphology, and disease susceptibility. We explore the limitations of current data sets for variant interpretation, tradeoffs between sequencing strategies, and the burgeoning role of long-read genomes for capturing structural variants. In addition, we consider how large-scale collections of whole-genome sequence data drive rare variant discovery and assess the geographic distribution of canine diversity, which identifies Asia as a major source of missing variation. Finally, we review recent comparative genomic analyses that will facilitate annotation of the noncoding genome in dogs.

2.
PLoS Genet ; 16(10): e1008926, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33090996

RESUMEN

The domestic cat (Felis catus) numbers over 94 million in the USA alone, occupies households as a companion animal, and, like humans, suffers from cancer and common and rare diseases. However, genome-wide sequence variant information is limited for this species. To empower trait analyses, a new cat genome reference assembly was developed from PacBio long sequence reads that significantly improve sequence representation and assembly contiguity. The whole genome sequences of 54 domestic cats were aligned to the reference to identify single nucleotide variants (SNVs) and structural variants (SVs). Across all cats, 16 SNVs predicted to have deleterious impacts and in a singleton state were identified as high priority candidates for causative mutations. One candidate was a stop gain in the tumor suppressor FBXW7. The SNV is found in cats segregating for feline mediastinal lymphoma and is a candidate for inherited cancer susceptibility. SV analysis revealed a complex deletion coupled with a nearby potential duplication event that was shared privately across three unrelated cats with dwarfism and is found within a known dwarfism associated region on cat chromosome B1. This SV interrupted UDP-glucose 6-dehydrogenase (UGDH), a gene involved in the biosynthesis of glycosaminoglycans. Importantly, UGDH has not yet been associated with human dwarfism and should be screened in undiagnosed patients. The new high-quality cat genome reference and the compilation of sequence variation demonstrate the importance of these resources when searching for disease causative alleles in the domestic cat and for identification of feline biomedical models.


Asunto(s)
Enanismo/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Genoma/genética , Uridina Difosfato Glucosa Deshidrogenasa/genética , Secuenciación Completa del Genoma , Alelos , Animales , Gatos , Mapeo Cromosómico , Predisposición Genética a la Enfermedad , Genómica , Humanos , Masculino , Anotación de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple/genética
3.
Mamm Genome ; 33(1): 213-229, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34498136

RESUMEN

Although DNA array-based approaches for genome-wide association studies (GWAS) permit the collection of thousands of low-cost genotypes, it is often at the expense of resolution and completeness, as SNP chip technologies are ultimately limited by SNPs chosen during array development. An alternative low-cost approach is low-pass whole genome sequencing (WGS) followed by imputation. Rather than relying on high levels of genotype confidence at a set of select loci, low-pass WGS and imputation rely on the combined information from millions of randomly sampled low-confidence genotypes. To investigate low-pass WGS and imputation in the dog, we assessed accuracy and performance by downsampling 97 high-coverage (> 15×) WGS datasets from 51 different breeds to approximately 1× coverage, simulating low-pass WGS. Using a reference panel of 676 dogs from 91 breeds, genotypes were imputed from the downsampled data and compared to a truth set of genotypes generated from high-coverage WGS. Using our truth set, we optimized a variant quality filtering strategy that retained approximately 80% of 14 M imputed sites and lowered the imputation error rate from 3.0% to 1.5%. Seven million sites remained with a MAF > 5% and an average imputation quality score of 0.95. Finally, we simulated the impact of imputation errors on outcomes for case-control GWAS, where small effect sizes were most impacted and medium-to-large effect sizes were minorly impacted. These analyses provide best practice guidelines for study design and data post-processing of low-pass WGS-imputed genotypes in dogs.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Animales , Estudios de Casos y Controles , Perros , Genotipo , Polimorfismo de Nucleótido Simple/genética , Secuenciación Completa del Genoma
4.
J Hered ; 113(2): 160-170, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35575082

RESUMEN

Despite periodic drops in popularity, Arctic sled dogs continue to play a vital role in northern societies, providing both freight transit and recreational race activities. In this study, we selected the Mackenzie River Husky, a freight dog of complex history, and the Chinook, an American Kennel Club recognized freight dog breed whose heritage reportedly overlaps that of the MKRH, for detailed population analysis. We tested each to determine their component breeds and used admixture analysis to ascertain their population structure. We utilized haplotype analysis to identify genomic regions shared between each population and their founding breeds. Our data show that the Alaskan Malamutes and modern Greenland sled dog contributed to both populations, but there are also unexpected contributions from the German Shepherd dog and Collie. We used haplotype analysis to identify genomic regions nearing fixation in population type and identify provocative genes in each region. Finally, in response to recent reports regarding the importance of dietary lipid genes in Arctic dogs, we analyzed 8 such genes in a targeted analysis observing signatures of selection in both populations at the MLXIPL gene loci. These data highlight the genetic routes that breeds of similar function have taken toward their occupation as successful sled dogs.


Asunto(s)
Lobos , Animales , Perros , Genoma , Genómica , Haplotipos , Lobos/genética
5.
PLoS Comput Biol ; 14(4): e1006091, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29677183

RESUMEN

The forces driving the accumulation and removal of non-coding DNA and ultimately the evolution of genome size in complex organisms are intimately linked to genome structure and organisation. Our analysis provides a novel method for capturing the regional variation of lineage-specific DNA gain and loss events in their respective genomic contexts. To further understand this connection we used comparative genomics to identify genome-wide individual DNA gain and loss events in the human and mouse genomes. Focusing on the distribution of DNA gains and losses, relationships to important structural features and potential impact on biological processes, we found that in autosomes, DNA gains and losses both followed separate lineage-specific accumulation patterns. However, in both species chromosome X was particularly enriched for DNA gain, consistent with its high L1 retrotransposon content required for X inactivation. We found that DNA loss was associated with gene-rich open chromatin regions and DNA gain events with gene-poor closed chromatin regions. Additionally, we found that DNA loss events tended to be smaller than DNA gain events suggesting that they were able to accumulate in gene-rich open chromatin regions due to their reduced capacity to interrupt gene regulatory architecture. GO term enrichment showed that mouse loss hotspots were strongly enriched for terms related to developmental processes. However, these genes were also located in regions with a high density of conserved elements, suggesting that despite high levels of DNA loss, gene regulatory architecture remained conserved. This is consistent with a model in which DNA gain and loss results in turnover or "churning" in regulatory element dense regions of open chromatin, where interruption of regulatory elements is selected against.


Asunto(s)
ADN/genética , Evolución Molecular , Animales , Biología Computacional , Elementos Transponibles de ADN , ADN Intergénico/genética , Ontología de Genes , Tamaño del Genoma , Genoma Humano , Genómica , Humanos , Ratones , Eliminación de Secuencia , Programas Informáticos , Especificidad de la Especie , Factores de Tiempo
6.
Proc Natl Acad Sci U S A ; 112(52): E7223-9, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668394

RESUMEN

NK-lysin is an antimicrobial peptide and effector protein in the host innate immune system. It is coded by a single gene in humans and most other mammalian species. In this study, we provide evidence for the existence of four NK-lysin genes in a repetitive region on cattle chromosome 11. The NK2A, NK2B, and NK2C genes are tandemly arrayed as three copies in ∼30-35-kb segments, located 41.8 kb upstream of NK1. All four genes are functional, albeit with differential tissue expression. NK1, NK2A, and NK2B exhibited the highest expression in intestine Peyer's patch, whereas NK2C was expressed almost exclusively in lung. The four peptide products were synthesized ex vivo, and their antimicrobial effects against both Gram-positive and Gram-negative bacteria were confirmed with a bacteria-killing assay. Transmission electron microcopy indicated that bovine NK-lysins exhibited their antimicrobial activities by lytic action in the cell membranes. In summary, the single NK-lysin gene in other mammals has expanded to a four-member gene family by tandem duplications in cattle; all four genes are transcribed, and the synthetic peptides corresponding to the core regions are biologically active and likely contribute to innate immunity in ruminants.


Asunto(s)
Bovinos/genética , Dosificación de Gen , Familia de Multigenes , Proteolípidos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromosomas de los Mamíferos/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/ultraestructura , Perfilación de la Expresión Génica , Orden Génico , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Péptidos/farmacología , Filogenia , Proteolípidos/clasificación , Proteolípidos/farmacología , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
7.
J Feline Med Surg ; 25(10): 1098612X231193557, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37791865

RESUMEN

OBJECTIVES: The present study aimed to determine the inheritance pattern and genetic cause of congenital radial hemimelia (RH) in cats. METHODS: Clinical and genetic analyses were conducted on a Siamese cat family (n = 18), including two siblings with RH. Radiographs were obtained for the affected kittens and echocardiograms of an affected kitten and sire. Whole genome sequencing was completed on the two cases and the parents. Genomic data were compared with the 99 Lives Cat Genome data set of 420 additional domestic cats with whole genome and whole exome sequencing data. Variants were considered as homozygous in the two cases of the siblings with RH and heterozygous in the parents. Candidate variants were genotyped by Sanger sequencing in the extended pedigree. RESULTS: Radiographs of the female kitten revealed bilateral absence of the radii and bowing of the humeri, while the male kitten showed a dysplastic right radius. Echocardiography suggested the female kitten had restrictive cardiomyopathy with a positive left atrial-to-aortic root ratio (LA:Ao = 1.83 cm), whereas hypertrophic cardiomyopathy was more likely in the sire, showing diastolic dysfunction using tissue Doppler imaging (59.06 cm/s). Twenty-two DNA variants were unique and homozygous in the affected kittens and heterozygous in the parents. Seven variants clustered in one chromosomal region, including two frameshift variants in cardiomyopathy associated 5 (CMYA5) and five variants in junction mediating and regulatory protein, P53 cofactor (JMY ), including a missense and an in-frame deletion. CONCLUSIONS AND RELEVANCE: The present study suggested an autosomal recessive mode of inheritance with variable expression for RH in the Siamese cat family. Candidate variants for the phenotype were identified, implicating their roles in bone development. These genes should be considered as potentially causal for other cats with RH. Siamese cat breeders should consider genetically testing their cats for these variants to prevent further dissemination of the suspected variants within the breed.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Enfermedades de los Gatos , Ectromelia , Femenino , Masculino , Gatos , Animales , Ectromelia/veterinaria , Cardiomiopatías/veterinaria , Factores de Riesgo , Cardiomiopatía Hipertrófica/veterinaria , Húmero , Enfermedades de los Gatos/diagnóstico por imagen , Enfermedades de los Gatos/genética
8.
Sci Adv ; 9(9): eade2537, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867701

RESUMEN

The 1986 Chernobyl nuclear disaster initiated a series of catastrophic events resulting in long-term and widespread environmental contamination. We characterize the genetic structure of 302 dogs representing three free-roaming dog populations living within the power plant itself, as well as those 15 to 45 kilometers from the disaster site. Genome-wide profiles from Chernobyl, purebred and free-breeding dogs, worldwide reveal that the individuals from the power plant and Chernobyl City are genetically distinct, with the former displaying increased intrapopulation genetic similarity and differentiation. Analysis of shared ancestral genome segments highlights differences in the extent and timing of western breed introgression. Kinship analysis reveals 15 families, with the largest spanning all collection sites within the radioactive exclusion zone, reflecting migration of dogs between the power plant and Chernobyl City. This study presents the first characterization of a domestic species in Chernobyl, establishing their importance for genetic studies into the effects of exposure to long-term, low-dose ionizing radiation.


Asunto(s)
Accidente Nuclear de Chernóbil , Desastres , Perros , Animales , Ambiente , Contaminación Ambiental , Demografía
9.
Genome Biol ; 24(1): 187, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582787

RESUMEN

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Asunto(s)
Lobos , Perros , Animales , Lobos/genética , Mapeo Cromosómico , Alelos , Polimorfismo de Nucleótido Simple , Nucleótidos , Demografía
10.
JFMS Open Rep ; 8(2): 20551169221137536, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532681

RESUMEN

Case summary: A 9-month-old entire male domestic longhair cat presented with a history of pathological fractures, chronic musculoskeletal pain and poor growth. Multiple facial and skeletal abnormalities were identified on physical examination and advanced imaging (CT and radiographs). A variant in CTSK was identified in the affected cat following whole-exome sequencing (WES). The cat was managed symptomatically with diet, environmental modifications and analgesia. Relevance and novel information: This is the first report of a cat with a similar clinical presentation and genetic variant to the hereditary human genetic disorder pyknodysostosis. In this case, WES was performed, which often facilitates the diagnosis of various hereditary disorders (ie, a conceptual framework for practicing feline genomic medicine). Despite the severe skeletal and appendicular abnormalities described, the cat was alive more than 2 years after its initial presentation.

11.
J Vet Intern Med ; 36(5): 1800-1805, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35962713

RESUMEN

OBJECTIVE: Describe the clinical course and diagnostic and genetic findings in a cat with X-linked myotubular myopathy. CASE SUMMARY: A 7-month-old male Maine coon was evaluated for progressively worsening gait abnormalities and generalized weakness. Neurolocalization was to the neuromuscular system. Genetic testing for spinal muscular atrophy (LIX1) was negative. Given the progressive nature and suspected poor long-term prognosis, the owners elected euthanasia. Histopathology of skeletal muscle obtained post-mortem disclosed numerous rounded atrophic or hypotrophic fibers with internal nuclei or central basophilic staining. Using oxidative reactions mediated by cytochrome C oxidase and succinic dehydrogenase, scattered myofibers were observed to have central dark staining structures and a "ring-like" appearance. Given the cat's age and clinical history, a congenital myopathy was considered most likely, with the central nuclei and "ring-like" changes consistent with either centronuclear or myotubular myopathy. Whole genome sequencing identified an underlying missense variant in myotubularin 1 (MTM1), a known candidate gene for X-linked myotubular myopathy. NEW OR UNIQUE INFORMATION PROVIDED: This case is the first report of X-linked myotubular myopathy in a cat with an MTM1 missense mutation. Maine coon cat breeders may consider screening for this variant to prevent production of affected cats and to eradicate the variant from the breeding population.


Asunto(s)
Enfermedades de los Gatos , Miopatías Estructurales Congénitas , Animales , Enfermedades de los Gatos/genética , Enfermedades de los Gatos/patología , Gatos , Complejo IV de Transporte de Electrones , Masculino , Músculo Esquelético/patología , Miopatías Estructurales Congénitas/diagnóstico , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/veterinaria , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Succinato Deshidrogenasa
12.
Genes (Basel) ; 12(6)2021 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070911

RESUMEN

The domestic dog has evolved to be an important biomedical model for studies regarding the genetic basis of disease, morphology and behavior. Genetic studies in the dog have relied on a draft reference genome of a purebred female boxer dog named "Tasha" initially published in 2005. Derived from a Sanger whole genome shotgun sequencing approach coupled with limited clone-based sequencing, the initial assembly and subsequent updates have served as the predominant resource for canine genetics for 15 years. While the initial assembly produced a good-quality draft, as with all assemblies produced at the time, it contained gaps, assembly errors and missing sequences, particularly in GC-rich regions, which are found at many promoters and in the first exons of protein-coding genes. Here, we present Dog10K_Boxer_Tasha_1.0, an improved chromosome-level highly contiguous genome assembly of Tasha created with long-read technologies that increases sequence contiguity >100-fold, closes >23,000 gaps of the CanFam3.1 reference assembly and improves gene annotation by identifying >1200 new protein-coding transcripts. The assembly and annotation are available at NCBI under the accession GCF_000002285.5.


Asunto(s)
Perros/genética , Genoma , Animales , Mapeo Contig , Anotación de Secuencia Molecular
13.
Sci Rep ; 11(1): 7159, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785770

RESUMEN

Over 94 million domestic cats are susceptible to cancers and other common and rare diseases. Whole exome sequencing (WES) is a proven strategy to study these disease-causing variants. Presented is a 35.7 Mb exome capture design based on the annotated Felis_catus_9.0 genome assembly, covering 201,683 regions of the cat genome. Whole exome sequencing was conducted on 41 cats with known and unknown genetic diseases and traits, of which ten cats had matching whole genome sequence (WGS) data available, used to validate WES performance. At 80 × mean exome depth of coverage, 96.4% of on-target base coverage had a sequencing depth > 20-fold, while over 98% of single nucleotide variants (SNVs) identified by WGS were also identified by WES. Platform-specific SNVs were restricted to sex chromosomes and a small number of olfactory receptor genes. Within the 41 cats, we identified 31 previously known causal variants and discovered new gene candidate variants, including novel missense variance for polycystic kidney disease and atrichia in the Peterbald cat. These results show the utility of WES to identify novel gene candidate alleles for diseases and traits for the first time in a feline model.


Asunto(s)
Enfermedades de los Gatos/genética , Secuenciación del Exoma , Exoma/genética , Predisposición Genética a la Enfermedad , Animales , Gatos , Femenino , Masculino , Polimorfismo de Nucleótido Simple
14.
Vet Clin North Am Small Anim Pract ; 50(5): 991-1000, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32665138

RESUMEN

The era of precision/genomic medicine has arrived, including its application within veterinary medicine for the health care of companion animals. The plummeting costs of assaying large groups of genetic tests into one panel has led many laboratories offering direct-to-consumer (DTC) genetic testing for animals, including cats. However, proper education of the consumer and the veterinarian is lacking, causing a significant lack of genetic counseling pertaining to the results of the genetic tests. This article addresses the current state of DTC testing in domestic cats and the implications for veterinary care.


Asunto(s)
Enfermedades de los Gatos/genética , Pruebas Dirigidas al Consumidor , Pruebas Genéticas/veterinaria , Animales , Gatos
15.
Vet Clin North Am Small Anim Pract ; 50(5): 983-990, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32653264

RESUMEN

The era of Precision / Genomic Medicine has arrived and can improve the veterinary healthcare of companion animals. The goal of Precision / Genomic Medicine is to use an individual's DNA signature / profile to tailor their treatments of their specific health problems. Whole genome sequencing is now a cost-effective diagnostic tool, leading to the discovery of DNA variants associated with health outcomes. These DNA variants become genetic tests and can readily be applied to future cases of individuals with similar symptoms. This article addresses the current state of Precision Medicine in domestic cats and the implications for veterinary care.


Asunto(s)
Enfermedades de los Gatos/tratamiento farmacológico , Pruebas Genéticas/veterinaria , Medicina de Precisión/veterinaria , Animales , Gatos
16.
Genes (Basel) ; 11(6)2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32575532

RESUMEN

An inherited neurologic syndrome in a family of mixed-breed Oriental cats has been characterized as forebrain commissural malformation, concurrent with ventriculomegaly and interhemispheric cysts. However, the genetic basis for this autosomal recessive syndrome in cats is unknown. Forty-three cats were genotyped on the Illumina Infinium Feline 63K iSelect DNA Array and used for analyses. Genome-wide association studies, including a sib-transmission disequilibrium test and a case-control association analysis, and homozygosity mapping, identified a critical region on cat chromosome A3. Short-read whole genome sequencing was completed for a cat trio segregating with the syndrome. A homozygous 7 bp deletion in growth differentiation factor 7 (GDF7) (c.221_227delGCCGCGC [p.Arg74Profs]) was identified in affected cats, by comparison to the 99 Lives Cat variant dataset, validated using Sanger sequencing and genotyped by fragment analyses. This variant was not identified in 192 unaffected cats in the 99 Lives dataset. The variant segregated concordantly in an extended pedigree. In mice, GDF7 mRNA is expressed within the roof plate when commissural axons initiate ventrally-directed growth. This finding emphasized the importance of GDF7 in the neurodevelopmental process in the mammalian brain. A genetic test can be developed for use by cat breeders to eradicate this variant.


Asunto(s)
Proteínas Morfogenéticas Óseas/genética , Hidrocefalia/genética , Malformaciones del Sistema Nervioso/genética , Comisuras Telencefálicas/fisiopatología , Animales , Gatos , Estudio de Asociación del Genoma Completo , Genotipo , Homocigoto , Hidrocefalia/fisiopatología , Ratones , Malformaciones del Sistema Nervioso/fisiopatología , Malformaciones del Sistema Nervioso/veterinaria , Linaje , Fenotipo , Secuenciación Completa del Genoma
17.
G3 (Bethesda) ; 10(8): 2741-2751, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32518081

RESUMEN

A neutered male domestic medium-haired cat presented at a veterinary neurology clinic at 20 months of age due to progressive neurological signs that included visual impairment, focal myoclonus, and frequent severe generalized seizures that were refractory to treatment with phenobarbital. Magnetic resonance imaging revealed diffuse global brain atrophy. Due to the severity and frequency of its seizures, the cat was euthanized at 22 months of age. Microscopic examination of the cerebellum, cerebral cortex and brainstem revealed pronounced intracellular accumulations of autofluorescent storage material and inflammation in all 3 brain regions. Ultrastructural examination of the storage material indicated that it consisted almost completely of tightly-packed membrane-like material. The clinical signs and neuropathology strongly suggested that the cat suffered from a form of neuronal ceroid lipofuscinosis (NCL). Whole exome sequence analysis was performed on genomic DNA from the affected cat. Comparison of the sequence data to whole exome sequence data from 39 unaffected cats and whole genome sequence data from an additional 195 unaffected cats revealed a homozygous variant in CLN6 that was unique to the affected cat. This variant was predicted to cause a stop gain in the transcript due to a guanine to adenine transition (ENSFCAT00000025909:c.668G > A; XM_003987007.5:c.668G > A) and was the sole loss of function variant detected. CLN6 variants in other species, including humans, dogs, and sheep, are associated with the CLN6 form of NCL. Based on the affected cat's clinical signs, neuropathology and molecular genetic analysis, we conclude that the cat's disorder resulted from the loss of function of CLN6. This study is only the second to identify the molecular genetic basis of a feline NCL. Other cats exhibiting similar signs can now be screened for the CLN6 variant. This could lead to establishment of a feline model of CLN6 disease that could be used in therapeutic intervention studies.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales , Animales , Secuencia de Bases , Gatos , Codón sin Sentido , Perros , Homocigoto , Masculino , Proteínas de la Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/veterinaria , Ovinos
18.
Genes (Basel) ; 11(6)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580512

RESUMEN

A variety of cat breeds have been developed via novelty selection on aesthetic, dermatological traits, such as coat colors and fur types. A recently developed breed, the lykoi (a.k.a. werewolf cat), was bred from cats with a sparse hair coat with roaning, implying full color and all white hairs. The lykoi phenotype is a form of hypotrichia, presenting as a significant reduction in the average numbers of follicles per hair follicle group as compared to domestic shorthair cats, a mild to severe perifollicular to mural lymphocytic infiltration in 77% of observed hair follicle groups, and the follicles are often miniaturized, dilated, and dysplastic. Whole genome sequencing was conducted on a single lykoi cat that was a cross between two independently ascertained lineages. Comparison to the 99 Lives dataset of 194 non-lykoi cats suggested two variants in the cat homolog for Hairless (HR) (HR lysine demethylase and nuclear receptor corepressor) as candidate causal gene variants. The lykoi cat was a compound heterozygote for two loss of function variants in HR, an exon 3 c.1255_1256dupGT (chrB1:36040783), which should produce a stop codon at amino acid 420 (p.Gln420Serfs*100) and, an exon 18 c.3389insGACA (chrB1:36051555), which should produce a stop codon at amino acid position 1130 (p.Ser1130Argfs*29). Ascertainment of 14 additional cats from founder lineages from Canada, France and different areas of the USA identified four additional loss of function HR variants likely causing the highly similar phenotypic hair coat across the diverse cats. The novel variants in HR for cat hypotrichia can now be established between minor differences in the phenotypic presentations.


Asunto(s)
Cruzamiento , Color del Cabello/genética , Folículo Piloso/crecimiento & desarrollo , Cabello/metabolismo , Alelos , Animales , Gatos , Cabello/crecimiento & desarrollo , Folículo Piloso/metabolismo , Polimorfismo de Nucleótido Simple/genética
20.
Genome Biol Evol ; 9(9): 2336-2353, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28945883

RESUMEN

The factors guiding retrotransposon insertion site preference are not well understood. Different types of retrotransposons share common replication machinery and yet occupy distinct genomic domains. Autonomous long interspersed elements accumulate in gene-poor domains and their nonautonomous short interspersed elements accumulate in gene-rich domains. To determine genomic factors that contribute to this discrepancy we analyzed the distribution of retrotransposons within the framework of chromosomal domains and regulatory elements. Using comparative genomics, we identified large-scale conserved patterns of retrotransposon accumulation across several mammalian genomes. Importantly, retrotransposons that were active after our sample-species diverged accumulated in orthologous regions. This suggested a similar evolutionary interaction between retrotransposon activity and conserved genome architecture across our species. In addition, we found that retrotransposons accumulated at regulatory element boundaries in open chromatin, where accumulation of particular retrotransposon types depended on insertion size and local regulatory element density. From our results, we propose a model where density and distribution of genes and regulatory elements canalize retrotransposon accumulation. Through conservation of synteny, gene regulation and nuclear organization, mammalian genomes with dissimilar retrotransposons follow similar evolutionary trajectories.


Asunto(s)
Cromatina , Evolución Molecular , Mamíferos/genética , Elementos Reguladores de la Transcripción , Retroelementos , Animales , Genoma , Genómica , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA