Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proteomics ; 18(10): e1700218, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29710410

RESUMEN

Bio-active peptides are involved in the regulation of most physiological processes in the body. Classical bio-active peptides (CBAPs) are cleaved from a larger precursor protein and stored in secretion vesicles from which they are released in the extracellular space. Recently, another non-classical type of bio-active peptides (NCBAPs) has gained interest. These typically are not secreted but instead appear to be translated from short open reading frames (sORF) and released directly into the cytoplasm. In contrast to CBAPs, these peptides are involved in the regulation of intra-cellular processes such as transcriptional control, calcium handling and DNA repair. However, bio-chemical evidence for the translation of sORFs remains elusive. Comprehensive analysis of sORF-encoded polypeptides (SEPs) is hampered by a number of methodological and biological challenges: the low molecular mass (many 4-10 kDa), the low abundance, transient expression and complications in data analysis. We developed a strategy to address a number of these issues. Our strategy is to exclude false positive identifications. In total sample, we identified 926 peptides originated from 37 known (neuro)peptide precursors in mouse striatum. In addition, four SEPs were identified including NoBody, a SEP that was previously discovered in humans and three novel SEPS from 5' untranslated transcript regions (UTRs).

2.
Mol Cell Proteomics ; 12(11): 3330-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23878402

RESUMEN

Multiparameter optimization of an LC-MS/MS shotgun proteomics experiment was performed without any hardware or software modification of the commercial instrument. Under the optimized experimental conditions, with a 50-cm-long separation column and a 4-h LC-MS run (including a 3-h optimized gradient), 4,825 protein groups and 37,550 peptides were identified in a single run and 5,354 protein groups and 56,390 peptides in a triplicate analysis of the A375 human cell line, for approximately 50% coverage of the expressed proteome. The major steps enabling such performance included optimization of the cell lysis and protein extraction, digestion of even insoluble cell debris, tailoring the LC gradient profile, and choosing the optimal dynamic exclusion window in data-dependent MS/MS, as well as the optimal m/z scan window.


Asunto(s)
Proteoma/análisis , Proteómica/métodos , Tampones (Química) , Línea Celular , Cromatografía Liquida/métodos , Humanos , Proteoma/aislamiento & purificación , Proteómica/instrumentación , Proteómica/estadística & datos numéricos , Espectrometría de Masas en Tándem/instrumentación , Espectrometría de Masas en Tándem/métodos
3.
Artículo en Inglés | MEDLINE | ID: mdl-31238262

RESUMEN

On average a human cell type expresses around 10,000 different protein coding genes synthesizing all the different molecular forms of the protein product (proteoforms) found in a cell. In a typical shotgun bottom up proteomic approach, the proteins are enzymatically cleaved, producing several 100,000 s of different peptides that are analyzed with liquid chromatography-tandem mass spectrometry (LC-MSMS). One of the major consequences of this high sample complexity is that coelution of peptides cannot be avoided. Moreover, low abundant peptides are difficult to identify as they have a lower chance of being selected for fragmentation due to ion-suppression effects and the semi-stochastic nature of the precursor selection in data-dependent shotgun proteomic analysis where peptides are selected for fragmentation analysis one-by-one as they elute from the column. In the current study we explore a simple novel approach that has the potential to counter some of the effect of coelution of peptides and improves the number of peptide identifications in a bottom-up proteomic analysis. In this method, peptides from a HeLa cell digest were eluted from the reverse phase column using three different elution solvents (acetonitrile, methanol and acetone) in three replicate reversed phase LC-MS/MS shotgun proteomic analysis. Results were compared with three technical replicates using the same solvent, which is common practice in proteomic analysis. In total, we see an increase of up to 10% in unique protein and up to 30% in unique peptide identifications from the combined analysis using different elution solvents when compared to the combined identifications from the three replicates of the same solvent. In addition, the overlap of unique peptide identifications common in all three LC-MS analyses in our approach is only 23% compared to 50% in the replicates using the same solvent. The method presented here thus provides an easy to implement method to significantly reduce the effects of coelution and ion suppression of peptides and improve protein coverage in shotgun proteomics. Data are available via ProteomeXchange with identifier PXD011908.


Asunto(s)
Cromatografía Liquida/métodos , Proteoma/química , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Células HeLa , Humanos , Péptidos/química
4.
Genomics Proteomics Bioinformatics ; 11(4): 219-29, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23917074

RESUMEN

Proteome-wide Amino aCid and Elemental composition (PACE) analysis is a novel and informative way of interrogating the proteome. The PACE approach consists of in silico decomposition of proteins detected and quantified in a proteomics experiment into 20 amino acids and five elements (C, H, N, O and S), with protein abundances converted to relative abundances of amino acids and elements. The method is robust and very sensitive; it provides statistically reliable differentiation between very similar proteomes. In addition, PACE provides novel insights into proteome-wide metabolic processes, occurring, e.g., during cell starvation. For instance, both Escherichia coli and Synechocystis down-regulate sulfur-rich proteins upon sulfur deprivation, but E. coli preferentially down-regulates cysteine-rich proteins while Synechocystis mainly down-regulates methionine-rich proteins. Due to its relative simplicity, flexibility, generality and wide applicability, PACE analysis has the potential of becoming a standard analytical tool in proteomics.


Asunto(s)
Aminoácidos/análisis , Biología Computacional/métodos , Proteoma/química , Aminoácidos/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Escherichia coli/química , Escherichia coli/metabolismo , Humanos , Proteoma/metabolismo , Proteómica , Estrés Fisiológico , Synechocystis/química , Synechocystis/metabolismo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA