Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Ultrasound Obstet Gynecol ; 64(1): 28-35, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38197584

RESUMEN

OBJECTIVES: Artificial intelligence (AI) has shown promise in improving the performance of fetal ultrasound screening in detecting congenital heart disease (CHD). The effect of giving AI advice to human operators has not been studied in this context. Giving additional information about AI model workings, such as confidence scores for AI predictions, may be a way of further improving performance. Our aims were to investigate whether AI advice improved overall diagnostic accuracy (using a single CHD lesion as an exemplar), and to determine what, if any, additional information given to clinicians optimized the overall performance of the clinician-AI team. METHODS: An AI model was trained to classify a single fetal CHD lesion (atrioventricular septal defect (AVSD)), using a retrospective cohort of 121 130 cardiac four-chamber images extracted from 173 ultrasound scan videos (98 with normal hearts, 75 with AVSD); a ResNet50 model architecture was used. Temperature scaling of model prediction probability was performed on a validation set, and gradient-weighted class activation maps (grad-CAMs) produced. Ten clinicians (two consultant fetal cardiologists, three trainees in pediatric cardiology and five fetal cardiac sonographers) were recruited from a center of fetal cardiology to participate. Each participant was shown 2000 fetal four-chamber images in a random order (1000 normal and 1000 AVSD). The dataset comprised 500 images, each shown in four conditions: (1) image alone without AI output; (2) image with binary AI classification; (3) image with AI model confidence; and (4) image with grad-CAM image overlays. The clinicians were asked to classify each image as normal or AVSD. RESULTS: A total of 20 000 image classifications were recorded from 10 clinicians. The AI model alone achieved an accuracy of 0.798 (95% CI, 0.760-0.832), a sensitivity of 0.868 (95% CI, 0.834-0.902) and a specificity of 0.728 (95% CI, 0.702-0.754), and the clinicians without AI achieved an accuracy of 0.844 (95% CI, 0.834-0.854), a sensitivity of 0.827 (95% CI, 0.795-0.858) and a specificity of 0.861 (95% CI, 0.828-0.895). Showing a binary (normal or AVSD) AI model output resulted in significant improvement in accuracy to 0.865 (P < 0.001). This effect was seen in both experienced and less-experienced participants. Giving incorrect AI advice resulted in a significant deterioration in overall accuracy, from 0.761 to 0.693 (P < 0.001), which was driven by an increase in both Type-I and Type-II errors by the clinicians. This effect was worsened by showing model confidence (accuracy, 0.649; P < 0.001) or grad-CAM (accuracy, 0.644; P < 0.001). CONCLUSIONS: AI has the potential to improve performance when used in collaboration with clinicians, even if the model performance does not reach expert level. Giving additional information about model workings such as model confidence and class activation map image overlays did not improve overall performance, and actually worsened performance for images for which the AI model was incorrect. © 2024 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.


Asunto(s)
Inteligencia Artificial , Defectos de los Tabiques Cardíacos , Ultrasonografía Prenatal , Humanos , Ultrasonografía Prenatal/métodos , Femenino , Embarazo , Estudios Retrospectivos , Defectos de los Tabiques Cardíacos/diagnóstico por imagen , Defectos de los Tabiques Cardíacos/embriología , Corazón Fetal/diagnóstico por imagen , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA