Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Electrophoresis ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38059733

RESUMEN

Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pKa values, as well as to unambiguously determine the protonation sites. Acidity constants (pKa ) of the NH+ moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pKa values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pKa of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pKa , the pKa values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pKa s determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.

2.
J Pept Sci ; 29(7): e3478, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36633503

RESUMEN

Insulin is a peptide responsible for regulating the metabolic homeostasis of the organism; it elicits its effects through binding to the transmembrane insulin receptor (IR). Insulin mimetics with agonistic or antagonistic effects toward the receptor are an exciting field of research and could find applications in treating diabetes or malignant diseases. We prepared five variants of a previously reported 20-amino acid insulin-mimicking peptide. These peptides differ from each other by the structure of the covalent bridge connecting positions 11 and 18. In addition to the peptide with a disulfide bridge, a derivative with a dicarba bridge and three derivatives with a 1,2,3-triazole differing from each other by the presence of sulfur or oxygen in their staples were prepared. The strongest binding to IR was exhibited by the peptide with a disulfide bridge. All other derivatives only weakly bound to IR, and a relationship between increasing bridge length and lower binding affinity can be inferred. Despite their nanomolar affinities, none of the prepared peptide mimetics was able to activate the insulin receptor even at high concentrations, but all mimetics were able to inhibit insulin-induced receptor activation. However, the receptor remained approximately 30% active even at the highest concentration of the agents; thus, the agents behave as partial antagonists. An interesting observation is that these mimetic peptides do not antagonize insulin action in proportion to their binding affinities. The compounds characterized in this study show that it is possible to modulate the functional properties of insulin receptor peptide ligands using disulfide mimetics.


Asunto(s)
Insulina , Receptor de Insulina , Insulina/metabolismo , Disulfuros/química , Péptidos/química
3.
Molecules ; 28(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175204

RESUMEN

Aliphatic hydrocarbons (HCs) are usually analyzed by gas chromatography (GC) or matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. However, analyzing long-chain HCs by GC is difficult because of their low volatility and the risk of decomposition at high temperatures. MALDI cannot distinguish between isomeric HCs. An alternative approach based on silver ion high-performance liquid chromatography (Ag-HPLC) is shown here. The separation of HC standards and cuticular HCs was accomplished using two ChromSpher Lipids columns connected in series. A gradient elution of the analytes was optimized using mobile phases prepared from hexane (or isooctane) and acetonitrile, 2-propanol, or toluene. HCs were detected by atmospheric pressure chemical ionization mass spectrometry (APCI-MS). Good separation of the analytes according to the number of double bonds, cis/trans geometry, and position of double bonds was achieved. The retention times increased with the number of double bonds, and trans isomers eluted ahead of cis isomers. The mobile phase significantly affected the mass spectra of HCs. Depending on the mobile phase composition, deprotonated molecules, molecular ions, protonated molecules, and various solvent-related adducts of HCs were observed. The optimized Ag-HPLC/APCI-MS was applied for characterizing cuticular HCs from a flesh fly, Neobellieria bullata, and cockroach, Periplaneta americana. The method made it possible to detect a significantly higher number of HCs than previously reported for GC or MALDI-MS. Unsaturated HCs were frequently detected as isomers differing by double-bond position(s). Minor HCs with trans double bonds were found beside the prevailing cis isomers. Ag-HPLC/APCI-MS has great potential to become a new tool in chemical ecology for studying cuticular HCs.


Asunto(s)
Hidrocarburos , Plata , Cromatografía Líquida de Alta Presión/métodos , Plata/química , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Presión Atmosférica
4.
J Comput Chem ; 43(2): 132-143, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34729803

RESUMEN

A method for averaging of NMR parameters by molecular dynamics (MD) has been derived from the method of statistical averaging in MD snapshots, benchmarked and applied to structurally dynamic interpretation of the 31 P NMR shift (δ31P ) in DNA phosphates. The method employs adiabatic dependence of an NMR parameter on selected geometric parameter(s) that is weighted by MD-calculated probability distribution(s) for the geometric parameter(s) (Ad-MD method). The usage of Ad-MD for polymers is computationally convenient when one pre-calculated structural dependence of an NMR parameter is employed for all chemically equivalent units differing only in dynamic behavior. The Ad-MD method is benchmarked against the statistical averaging method for δ31P in the model phosphates featuring distinctively different structures and dynamic behavior. The applicability of Ad-MD is illustrated by calculating 31 P NMR spectra in the Dickerson-Drew DNA dodecamer. δ31P was calculated with the B3LYP/IGLO-III/PCM(water) and the probability distributions for the torsion angles adjacent to the phosphorus atoms in the DNA phosphates were calculated using the OL15 force field.


Asunto(s)
ADN/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Teoría Funcional de la Densidad , Conformación de Ácido Nucleico , Fósforo
5.
Org Biomol Chem ; 20(12): 2446-2454, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35253830

RESUMEN

Preptin is a 34-amino-acid-long peptide derived from the E-domain of a precursor of insulin-like growth factor 2 (pro-IGF2) with bone-anabolic and insulin secretion amplifying properties. Here, we describe the synthesis, structures, and biological activities of six shortened analogues of human preptin. Eight- and nine-amino-acid-long peptide amides corresponding to the C-terminal part of human preptin were stabilised by two types of staples to induce a higher proportion of helicity in their secondary structure. We monitored the secondary structure of the stapled peptides using circular dichroism. The biological effect of the structural changes was determined afterwards by the ability of peptides to stimulate the release of intracellular calcium ions. We confirmed the previous observation that the stabilisation of the disordered conformation of human preptin has a deleterious effect on biological potency. However, surprisingly, one of our preptin analogues, a nonapeptide stabilised by olefin metathesis between positions 3 and 7 of the amino acid chain, had a similar ability to stimulate calcium ions' release to the full-length human preptin. Our findings could open up new ways to design new preptin analogues, which may have potential as drugs for the treatment of diabetes and osteoporosis.


Asunto(s)
Calcio , Factor II del Crecimiento Similar a la Insulina , Huesos , Humanos , Factor II del Crecimiento Similar a la Insulina/química , Fragmentos de Péptidos/química , Péptidos
6.
Bioorg Med Chem ; 56: 116632, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35078032

RESUMEN

The oligoadenylate synthetase-ribonuclease L pathway is a major player in the interferon-induced antiviral defense mechanism of cells. Upon sensing viral dsRNA, 5'-phosphorylated 2',5'-oligoadenylates are synthesized, and subsequently activate latent RNase L. To determine the influence of 5'-phosphate end on the activation of human RNase L, four sets of 5'-phosphonate modified oligoadenylates were prepared on solid-phase. The ability of these 5'-modified oligoadenylates bearing shortened, isosteric and prolonged phosphonate linkages to activate RNase L was explored. We found that isosteric linkages and linkages prolonged by one atom were in general well tolerated by the enzyme with the EC50 values comparable to that of the natural activator. In contrast, linkages shortened by one atom or prolonged by two atoms exhibited decrease in the activity.


Asunto(s)
Nucleótidos de Adenina/farmacología , Endorribonucleasas/metabolismo , Oligorribonucleótidos/farmacología , Organofosfonatos/farmacología , Nucleótidos de Adenina/síntesis química , Nucleótidos de Adenina/química , Relación Dosis-Respuesta a Droga , Humanos , Conformación de Ácido Nucleico , Oligorribonucleótidos/síntesis química , Oligorribonucleótidos/química , Organofosfonatos/síntesis química , Organofosfonatos/química , Relación Estructura-Actividad
7.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364465

RESUMEN

The synthesis of a tetrathiafulvalene (TTF) derivative, S-[4-({4-[(2,2'-bi-1,3-dithiol-4-ylmethoxy)methyl] phenyl}ethynyl)phenyl] ethanethioate, suitable for the modification of gold nanoparticles (AuNPs), is described in this article. The TTF ligand was self-assembled on the AuNP surface through ligand exchange, starting from dodecanethiol-stabilized AuNPs. The resulting modified AuNPs were characterized by TEM, UV-Vis spectroscopy, and electrochemistry. The most suitable electrochemical method was the phase-sensitive AC voltammetry at very low frequencies of the sine-wave perturbation. The results indicate a diminishing electronic communication between the two equivalent redox centers of TTF and also intermolecular donor-acceptor interactions manifested by an additional oxidation wave upon attachment of the ligand to AuNPs.


Asunto(s)
Oro , Nanopartículas del Metal , Oro/química , Electroquímica/métodos , Ligandos , Nanopartículas del Metal/química
8.
Biochemistry ; 60(48): 3714-3727, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34788017

RESUMEN

The 3'-5', 3'-5' cyclic dinucleotides (3'3'CDNs) are bacterial second messengers that can also bind to the stimulator of interferon genes (STING) adaptor protein in vertebrates and activate the host innate immunity. Here, we profiled the substrate specificity of four bacterial dinucleotide synthases from Vibrio cholerae (DncV), Bacillus thuringiensis (btDisA), Escherichia coli (dgcZ), and Thermotoga maritima (tDGC) using a library of 33 nucleoside-5'-triphosphate analogues and then employed these enzymes to synthesize 24 3'3'CDNs. The STING affinity of CDNs was evaluated in cell-based and biochemical assays, and their ability to induce cytokines was determined by employing human peripheral blood mononuclear cells. Interestingly, the prepared heterodimeric 3'3'CDNs bound to the STING much better than their homodimeric counterparts and showed similar or better potency than bacterial 3'3'CDNs. We also rationalized the experimental findings by in-depth STING-CDN structure-activity correlations by dissecting computed interaction free energies into a set of well-defined and intuitive terms. To this aim, we employed state-of-the-art methods of computational chemistry, such as quantum mechanics/molecular mechanics (QM/MM) calculations, and complemented the computed results with the {STING:3'3'c-di-ara-AMP} X-ray crystallographic structure. QM/MM identified three outliers (mostly homodimers) for which we have no clear explanation of their impaired binding with respect to their heterodimeric counterparts, whereas the R2 = 0.7 correlation between the computed ΔG'int_rel and experimental ΔTm's for the remaining ligands has been very encouraging.


Asunto(s)
Inmunidad Innata/genética , Proteínas de la Membrana/ultraestructura , Nucleótidos/biosíntesis , Relación Estructura-Actividad , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/ultraestructura , Cristalografía por Rayos X , Citocinas/química , Citocinas/genética , Escherichia coli/enzimología , Escherichia coli/ultraestructura , Humanos , Leucocitos Mononucleares/química , Leucocitos Mononucleares/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Nucleótidos/química , Nucleótidos/genética , Teoría Cuántica , Especificidad por Sustrato , Thermotoga maritima/enzimología , Thermotoga maritima/ultraestructura , Vibrio cholerae/enzimología , Vibrio cholerae/ultraestructura
9.
Phys Chem Chem Phys ; 23(12): 7280-7294, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33876088

RESUMEN

Performance of computational methods in modelling cyclic dinucleotides - an important and challenging class of compounds - has been evaluated by two different benchmarks: (1) gas-phase conformational energies and (2) qualitative agreement with NMR observations of the orientation of the χ-dihedral angle in solvent. In gas-phase benchmarks, where CCSD(T) and DLPNO-CCSD(T) methods have been used as the reference, most of the (dispersion corrected) density functional approximations are accurate enough to justify prioritizing computational cost and compatibility with other modelling options as the criterion of choice. NMR experiments of 3'3'-c-di-AMP, 3'3'-c-GAMP, and 3'3'-c-di-GMP show the overall prevalence of the anti-conformation of purine bases, but some population of syn-conformations is observed for guanines. Implicit solvation models combined with quantum-chemical methods struggle to reproduce this behaviour, probably due to a lack of dynamics and explicitly modelled solvent, leading to structures that are too compact. Molecular dynamics simulations overrepresent the syn-conformation of guanine due to the overestimation of an intramolecular hydrogen bond. Our combination of experimental and computational benchmarks provides "error bars" for modelling cyclic dinucleotides in solvent, where such information is generally difficult to obtain, and should help gauge the interpretability of studies dealing with binding of cyclic dinucleotides to important pharmaceutical targets. At the same time, the presented analysis calls for improvement in both implicit solvation models and force-field parameters.


Asunto(s)
Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Nucleótidos Cíclicos/química , Termodinámica , Conformación de Ácido Nucleico , Soluciones
10.
Bioorg Chem ; 107: 104548, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33358613

RESUMEN

Multi-orthogonal molecular scaffolds can be applied as core structures of bioactive compounds. Here, we prepared four tri-orthogonal scaffolds based on adamantane or proline skeletons. The scaffolds were used for the solid-phase synthesis of model insulin mimetics bearing two different peptides on the scaffolds. We found that adamantane-derived compounds bind to the insulin receptor more effectively (Kd value of 0.5 µM) than proline-derived compounds (Kd values of 15-38 µM) bearing the same peptides. Molecular dynamics simulations suggest that spacers between peptides and central scaffolds can provide greater flexibility that can contribute to increased binding affinity. Molecular modeling showed possible binding modes of mimetics to the insulin receptor. Our data show that the structure of the central scaffold and flexibility of attached peptides in this type of compound are important and that different scaffolds should be considered when designing peptide hormone mimetics.


Asunto(s)
Adamantano/química , Insulina/análogos & derivados , Prolina/química , Receptor de Insulina/metabolismo , Animales , Sitios de Unión , Humanos , Insulina/síntesis química , Insulina/metabolismo , Cinética , Simulación de Dinámica Molecular , Unión Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Ratas , Receptor de Insulina/química , Técnicas de Síntesis en Fase Sólida , Estereoisomerismo
11.
Tetrahedron ; 89: 132159, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-33879930

RESUMEN

Analogs of nucleosides and nucleotides represent a promising pool of potential therapeutics. This work describes a new synthetic route leading to 2'-deoxy-2'-fluorotetradialdose D-nucleoside phosphonates. Moreover, a new universal synthetic route leading to tetradialdose d-nucleosides bearing purine nucleobases is also described. All new compounds were tested as triphosphate analogs for inhibitory potency against a variety of viral polymerases. The fluorinated nucleosides were transformed to phosphoramidate prodrugs and evaluated in cell cultures against various viruses including influenza and SARS-CoV-2.

12.
Molecules ; 26(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34770942

RESUMEN

Saponins, a diverse group of natural compounds, offer an interesting pool of derivatives with biomedical application. In this study, three structurally related spirostanol saponins were isolated and identified from the leek flowers of Allium porrum L. (garden leek). Two of them were identical with the already known leek plant constituents: aginoside (1) and 6-deoxyaginoside (2). The third one was identified as new component of A. porrum; however, it was found identical with yayoisaponin A (3) obtained earlier from a mutant of elephant garlic Allium ampeloprasun L. It is a derivative of the aginoside (1) with additional glucose in its glycosidic chain, identified by MS and NMR analysis as (2α, 3ß, 6ß, 25R)-2,6-dihydroxyspirostan-3-yl ß-D-glucopyranosyl-(1 → 3)-ß-D-glucopranosyl-(1 → 2)-[ß-D-xylopyranosyl-(1 → 3)]-ß-D-glucopyranosyl]-(1 → 4)-ß-D-galactopyranoside, previously reported also under the name alliporin. The leek native saponins were tested together with other known and structurally related saponins (tomatonin and digitonin) and with their related aglycones (agigenin and diosgenin) for in vitro cytotoxicity and for effects on NO production in mouse peritoneal cells. The highest inhibitory effects were exhibited by 6-deoxyaginoside. The obtained toxicity data, however, closely correlated with the suppression of NO production. Therefore, an unambiguous linking of obtained bioactivities of saponins with their expected immunobiological properties remained uncertain.


Asunto(s)
Allium/química , Flores/química , Macrófagos Peritoneales/efectos de los fármacos , Óxido Nítrico/antagonistas & inhibidores , Saponinas/farmacología , Espirostanos/farmacología , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos Peritoneales/metabolismo , Ratones , Ratones Endogámicos C57BL , Conformación Molecular , Óxido Nítrico/biosíntesis , Saponinas/química , Saponinas/aislamiento & purificación , Espirostanos/química , Espirostanos/aislamiento & purificación
13.
J Biol Chem ; 294(46): 17371-17382, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31558604

RESUMEN

Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58-IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/química , Insulina/química , Receptor IGF Tipo 1/química , Receptor de Insulina/química , Anomalías Múltiples/genética , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Trastornos del Crecimiento/genética , Humanos , Insulina/análogos & derivados , Insulina/síntesis química , Insulina/genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/química , Factor II del Crecimiento Similar a la Insulina/genética , Mutación/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/genética , Dominios Proteicos/genética , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética
14.
J Org Chem ; 85(1): 248-276, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31808692

RESUMEN

A series of carba- or oxa[5]-, [6]-, [7]-, and -[19]helicene (di)thiols was prepared. The Miyazaki-Newman-Kwart rearrangement of (dimethylcarbamothioyl)oxy (oxa)helicenes in a flow reactor or nucleophilic substitution of dichloro (oxa)helicenes with alkanethiolates were used in the sulfanylation step. Despite the high temperatures employed in this key step, no conformational scrambling was observed during the asymmetric synthesis of the diastereo- and enantiopure oxahelicenes. Single-molecule conductivity of the longest oxa[19]helicene dithiol derivative was studied by the scanning tunneling microscopy break-junction method.

15.
J Biol Chem ; 293(43): 16818-16829, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30213860

RESUMEN

Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase-type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.


Asunto(s)
Insulina/agonistas , Insulina/metabolismo , Receptor de Insulina/metabolismo , Receptores de Somatomedina/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Factor I del Crecimiento Similar a la Insulina/química , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Cinética , Unión Proteica , Receptor IGF Tipo 1 , Receptor de Insulina/química , Receptor de Insulina/genética , Receptores de Somatomedina/química , Receptores de Somatomedina/genética
16.
Chemistry ; 25(49): 11494-11502, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31095794

RESUMEN

Racemic and highly enantioenriched 3-methoxycarbonyl, 3-carboxy, and 3-hydroxymethyl derivatives of dibenzo[6]helicene were prepared. The Langmuir layers of these helicenes were formed at the air-water interface and transferred onto solid substrates to afford Langmuir-Blodgett films, which were then studied by ambient atomic force microscopy and (chir)optical spectroscopy. Significant differences were found in the behaviour of the Langmuir layers as well as in the morphology, UV/Vis, electronic circular dichroism (ECD), and fluorescence spectra of the Langmuir-Blodgett thin films depending on the molecular chirality and nature of the polar group. The experimental results were supported by molecular dynamics simulations.

17.
FEMS Yeast Res ; 19(3)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30753486

RESUMEN

Candida albicans is the main causative agent of vulvovaginal candidiasis (VVC), a common mycosis in women, relapses of which are difficult to manage due to biofilm formation. This study aimed at developing novel non-toxic compounds active against Candida spp. biofilms. We synthesised analogues of natural antifungal peptides LL-III (LL-III/43) and HAL-2 (peptide VIII) originally isolated from bee venoms and elucidated their structures by nuclear magnetic resonance spectroscopy. The haemolytic, cytotoxic, antifungal and anti-biofilm activities of LL-III/43 and peptide VIII were then tested. LL-III/43 and VIII showed moderate cytotoxicity to HUVEC-2 cells and had comparable inhibitory activity against C. albicans and non-albicans spp. The lowest minimum inhibitory concentration (MIC90) of LL-III/43 was observed towards Candida tropicalis (0.8 µM). That was 8-fold lower than that of antimycotic amphotericin B. Both peptides can be used to inhibit Candida spp. bio film f ormation. Biofilm inhibitory concentrations (BIC50) ranged from 0.9 to 58.6 µM and biofilm eradication concentrations (BEC50) for almost all tested Candida spp. strains ranged from 12.8 to 200 µM. Als o pro ven were the peptides' abilities to reduce the area colonised by biofilms , inhibit hyphae formation and permeabilise cell membranes in biofil ms . LL-III/43 and VIII are promising candidates for further development as therapeutics against VVC.


Asunto(s)
Antifúngicos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Venenos de Abeja/química , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Anfotericina B/farmacología , Antifúngicos/síntesis química , Péptidos Catiónicos Antimicrobianos/síntesis química , Candidiasis Vulvovaginal/microbiología , Células Cultivadas , Femenino , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Hifa/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
18.
Bioorg Med Chem ; 27(2): 255-264, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30552009

RESUMEN

A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.


Asunto(s)
Carbamatos/química , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Inhibidores de Proteasas/química , Urea/análogos & derivados , Animales , Carbamatos/síntesis química , Carbamatos/metabolismo , Dominio Catalítico , Línea Celular , Drosophila/genética , Pruebas de Enzimas , Glutamato Carboxipeptidasa II/química , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/metabolismo , Unión Proteica , Teoría Cuántica , Estereoisomerismo , Urea/síntesis química , Urea/química , Urea/metabolismo
19.
Beilstein J Org Chem ; 15: 1933-1944, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31501660

RESUMEN

Sesquiterpene lactones are secondary plant metabolites with sundry biological effects. In plants, they are synthesized, among others, for pesticidal and antimicrobial effects. Two such compounds, archangelolide and trilobolide of the guaianolide type, are structurally similar to the well-known and clinically tested lactone thapsigargin. While trilobolide has already been studied by us and others, there are only scarce reports on the biological activity of archangelolide. Here we present the preparation of its fluorescent derivative based on a dansyl moiety using azide-alkyne Huisgen cycloaddition having obtained the two sesquiterpene lactones from the seeds of Laserpitium archangelica Wulfen using supercritical CO2 extraction. We show that dansyl-archangelolide localizes in the endoplasmic reticulum of living cells similarly to trilobolide; localization in mitochondria was also detected. This led us to a more detailed study of the anticancer potential of archangelolide. Interestingly, we found that neither archangelolide nor its dansyl conjugate did exhibit cytotoxic effects in contrast to the structurally closely related counterparts trilobolide and thapsigargin. We explain this observation by a molecular dynamics simulation, in which, in contrast to trilobolide, archangelolide did not bind into the sarco/endoplasmic reticular calcium ATPase cavity utilized by thapsigargin. Last, but not least, archangelolide exhibited anti-inflammatory activity, which makes it promising compound for medicinal purposes.

20.
J Lipid Res ; 59(11): 2164-2173, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30254076

RESUMEN

Vernix caseosa, the waxy substance that coats the skin of newborn babies, has an extremely complex lipid composition. We have explored these lipids and identified nonhydroxylated 1-O-acylceramides (1-O-ENSs) as a new class of lipids in vernix caseosa. These ceramides mostly contain saturated C11-C38 ester-linked (1-O) acyls, saturated C12-C39 amide-linked acyls, and C16-C24 sphingoid bases. Because their fatty acyl chains are frequently branched, numerous molecular species were separable and detectable by HPLC/MS: we found more than 2,300 molecular species, 972 of which were structurally characterized. The most abundant 1-O-ENSs contained straight-chain and branched fatty acyls with 20, 22, 24, or 26 carbons in the 1-O position, 24 or 26 carbons in the N position, and sphingosine. The 1-O-ENSs were isolated using multistep TLC and HPLC and they accounted for 1% of the total lipid extract. The molecular species of 1-O-ENSs were separated on a C18 HPLC column using an acetonitrile/propan-2-ol gradient and detected by APCI-MS, and the structures were elucidated by high-resolution and tandem MS. Medium-polarity 1-O-ENSs likely contribute to the cohesiveness and to the waterproofing and moisturizing properties of vernix caseosa.


Asunto(s)
Ceramidas/metabolismo , Vernix Caseosa/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía de Gases y Espectrometría de Masas , Humanos , Recién Nacido , Lípidos/sangre , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Piel/metabolismo , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA