Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 198: 106558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852754

RESUMEN

Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.


Asunto(s)
Corteza Cerebral , Filaminas , Proteína de Unión al GTP rac1 , Animales , Ratones , Factores Despolimerizantes de la Actina/metabolismo , Corteza Cerebral/metabolismo , Filaminas/metabolismo , Filaminas/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Ratones Transgénicos , Neurogénesis/fisiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Heterotopia Nodular Periventricular/genética , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Células Piramidales/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/genética
2.
Epilepsia ; 65(7): 2111-2126, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38717560

RESUMEN

OBJECTIVE: Genetic variations in proteins of the mechanistic target of rapamycin (mTOR) pathway cause a spectrum of neurodevelopmental disorders often associated with brain malformations and with intractable epilepsy. The mTORopathies are characterized by hyperactive mTOR pathway and comprise tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type II. How hyperactive mTOR translates into abnormal neuronal activity and hypersynchronous network remains to be better understood. Previously, the role of upregulated GluN2C-containing glutamate-gated N-methyl-D-aspartate receptors (NMDARs) has been demonstrated for germline defects in the TSC genes. Here, we questioned whether this mechanism would expand to other mTORopathies in the different context of a somatic genetic variation of the MTOR protein recurrently found in FCD type II. METHODS: We used a rat model of FCD created by in utero electroporation of neural progenitors of dorsal telencephalon with expression vectors encoding either the wild-type or the pathogenic MTOR variant (p.S2215F). In this mosaic configuration, patch-clamp whole-cell recordings of the electroporated, spiny stellate neurons and extracellular recordings of the electroporated areas were performed in neocortical slices. Selective inhibitors were used to target mTOR activity and GluN2C-mediated currents. RESULTS: Neurons expressing the mutant protein displayed an excessive activation of GluN2C NMDAR-mediated spontaneous excitatory postsynaptic currents. GluN2C-dependent increase in spontaneous spiking activity was detected in the area of electroporated neurons in the mutant condition and was restricted to a critical time window between postnatal days P9 and P20. SIGNIFICANCE: Somatic MTOR pathogenic variant recurrently found in FCD type II resulted in overactivation of GluN2C-mediated neuronal NMDARs in neocortices of rat pups. The related and time-restricted local hyperexcitability was sensitive to subunit GluN2C-specific blockade. Our study suggests that GluN2C-related pathomechanisms might be shared in common by mTOR-related brain disorders.


Asunto(s)
Neuronas , Receptores de N-Metil-D-Aspartato , Serina-Treonina Quinasas TOR , Animales , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Ratas , Neuronas/metabolismo , Femenino , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/fisiopatología , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Técnicas de Placa-Clamp , Malformaciones del Desarrollo Cortical de Grupo I/genética , Displasia Cortical Focal , Epilepsia
3.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38892438

RESUMEN

The strength of inhibitory neurotransmission depends on intracellular neuronal chloride concentration, primarily regulated by the activity of cation-chloride cotransporters NKCC1 (Sodium-Potassium-Chloride Cotransporter 1) and KCC2 (Potassium-Chloride Cotransporter 2). Brain-derived neurotrophic factor (BDNF) influences the functioning of these co-transporters. BDNF is synthesized from precursor proteins (proBDNF), which undergo proteolytic cleavage to yield mature BDNF (mBDNF). While previous studies have indicated the involvement of BDNF signaling in the activity of KCC2, its specific mechanisms are unclear. We investigated the interplay between both forms of BDNF and chloride homeostasis in rat hippocampal neurons and in utero electroporated cortices of rat pups, spanning the behavioral, cellular, and molecular levels. We found that both pro- and mBDNF play a comparable role in immature neurons by inhibiting the capacity of neurons to extrude chloride. Additionally, proBDNF increases the endocytosis of KCC2 while maintaining a depolarizing shift of EGABA in maturing neurons. Behaviorally, proBDNF-electroporated rat pups in the somatosensory cortex exhibit sensory deficits, delayed huddling, and cliff avoidance. These findings emphasize the role of BDNF signaling in regulating chloride transport through the modulation of KCC2. In summary, this study provides valuable insights into the intricate interplay between BDNF, chloride homeostasis, and inhibitory synaptic transmission, shedding light on the underlying cellular mechanisms involved.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cloruros , Cotransportadores de K Cl , Neuronas , Miembro 2 de la Familia de Transportadores de Soluto 12 , Animales , Femenino , Ratas , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Cloruros/metabolismo , Hipocampo/metabolismo , Homeostasis , Neuronas/metabolismo , Precursores de Proteínas/metabolismo , Simportadores/metabolismo
4.
Neurobiol Dis ; 177: 106002, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36649744

RESUMEN

Malformations of cortical development represent a major cause of epilepsy in childhood. However, the pathological substrate and dynamic changes leading to the development and progression of epilepsy remain unclear. Here, we characterized an etiology-relevant rat model of subcortical band heterotopia (SBH), a diffuse type of cortical malformation associated with drug-resistant seizures in humans. We used longitudinal electrographic recordings to monitor the age-dependent evolution of epileptiform discharges during the course of epileptogenesis in this model. We found both quantitative and qualitative age-related changes in seizures properties and patterns, accompanying a gradual progression towards a fully developed seizure pattern seen in adulthood. We also dissected the relative contribution of the band heterotopia and the overlying cortex to the development and age-dependent progression of epilepsy using timed and spatially targeted manipulation of neuronal excitability. We found that an early suppression of neuronal excitability in SBH slows down epileptogenesis in juvenile rats, whereas epileptogenesis is paradoxically exacerbated when excitability is suppressed in the overlying cortex. However, in rats with active epilepsy, similar manipulations of excitability have no effect on chronic spontaneous seizures. Together, our data support the notion that complex developmental alterations occurring in both the SBH and the overlying cortex concur to creating pathogenic circuits prone to generate seizures. Our study also suggests that early and targeted interventions could potentially influence the course of these altered developmental trajectories, and favorably modify epileptogenesis in malformations of cortical development.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Epilepsia , Humanos , Ratas , Animales , Corteza Cerebral/patología , Epilepsia/patología , Convulsiones/complicaciones , Neuronas/patología
5.
J Cell Sci ; 133(20)2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32989040

RESUMEN

Sonic hedgehog (Shh) and its patched-smoothened receptor complex control a variety of functions in the developing central nervous system, such as neural cell proliferation and differentiation. Recently, Shh signaling components have been found to be expressed at the synaptic level in the postnatal brain, suggesting a potential role in the regulation of synaptic transmission. Using in utero electroporation of constitutively active and negative-phenotype forms of the Shh signal transducer smoothened (Smo), we studied the role of Smo signaling in the development and maturation of GABAergic transmission in the somatosensory cortex. Our results show that enhancing Smo activity during development accelerates the shift from depolarizing to hyperpolarizing GABA in a manner dependent on functional expression of potassium-chloride cotransporter type 2 (KCC2, also known as SLC12A5). On the other hand, blocking Smo activity maintains the GABA response in a depolarizing state in mature cortical neurons, resulting in altered chloride homeostasis and increased seizure susceptibility. This study reveals unexpected functions of Smo signaling in the regulation of chloride homeostasis, through control of KCC2 cell-surface stability, and the timing of the GABA excitatory-to-inhibitory shift in brain maturation.


Asunto(s)
Proteínas Hedgehog , Corteza Somatosensorial , Animales , Proteínas Hedgehog/metabolismo , Receptores Patched , Ratas , Receptor Smoothened/genética , Corteza Somatosensorial/metabolismo , Ácido gamma-Aminobutírico
6.
Hum Mol Genet ; 28(22): 3755-3765, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31411685

RESUMEN

Single germline or somatic activating mutations of mammalian target of rapamycin (mTOR) pathway genes are emerging as a major cause of type II focal cortical dysplasia (FCD), hemimegalencephaly (HME) and tuberous sclerosis complex (TSC). A double-hit mechanism, based on a primary germline mutation in one allele and a secondary somatic hit affecting the other allele of the same gene in a small number of cells, has been documented in some patients with TSC or FCD. In a patient with HME, severe intellectual disability, intractable seizures and hypochromic skin patches, we identified the ribosomal protein S6 (RPS6) p.R232H variant, present as somatic mosaicism at ~15.1% in dysplastic brain tissue and ~11% in blood, and the MTOR p.S2215F variant, detected as ~8.8% mosaicism in brain tissue, but not in blood. Overexpressing the two variants independently in animal models, we demonstrated that MTOR p.S2215F caused neuronal migration delay and cytomegaly, while RPS6 p.R232H prompted increased cell proliferation. Double mutants exhibited a more severe phenotype, with increased proliferation and migration defects at embryonic stage and, at postnatal stage, cytomegalic cells exhibiting eccentric nuclei and binucleation, which are typical features of balloon cells. These findings suggest a synergistic effect of the two variants. This study indicates that, in addition to single activating mutations and double-hit inactivating mutations in mTOR pathway genes, severe forms of cortical dysplasia can also result from activating mutations affecting different genes in this pathway. RPS6 is a potential novel disease-related gene.


Asunto(s)
Hemimegalencefalia/genética , Proteína S6 Ribosómica/genética , Serina-Treonina Quinasas TOR/genética , Animales , Encéfalo/metabolismo , Niño , Epilepsia Refractaria/genética , Epilepsia Refractaria/metabolismo , Epilepsia/genética , Femenino , Humanos , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/genética , Ratones , Mosaicismo , Mutación , Neuronas/metabolismo , Proteína S6 Ribosómica/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
7.
Cereb Cortex ; 29(10): 4253-4262, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-30534979

RESUMEN

Subcortical band heterotopia (SBH), also known as double-cortex syndrome, is a neuronal migration disorder characterized by an accumulation of neurons in a heterotopic band below the normotopic cortex. The majority of patients with SBH have mild to moderate intellectual disability and intractable epilepsy. However, it is still not clear how cortical networks are organized in SBH patients and how this abnormal organization contributes to improper brain function. In this study, cortical networks were investigated in the barrel cortex in an animal model of SBH induced by in utero knockdown of Dcx, main causative gene of this condition in human patients. When the SBH was localized below the Barrel Field (BF), layer (L) four projection to correctly positioned L2/3 pyramidal cells was weakened due to lower connectivity. Conversely, when the SBH was below an adjacent cortical region, the excitatory L4 to L2/3 projection was stronger due to increased L4 neuron excitability, synaptic strength and excitation/inhibition ratio of L4 to L2/3 connection. We propose that these developmental alterations contribute to the spectrum of clinical dysfunctions reported in patients with SBH.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/fisiopatología , Neuronas/fisiología , Corteza Somatosensorial/fisiopatología , Sinapsis/fisiología , Animales , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Técnicas de Silenciamiento del Gen , Potenciales de la Membrana , Proteínas Asociadas a Microtúbulos/genética , Neuropéptidos/genética , Ratas Wistar , Corteza Somatosensorial/patología
8.
Epilepsia ; 60(2): 337-348, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30597542

RESUMEN

OBJECTIVE: Malformations of cortical development are common causes of intellectual disability and epilepsy, yet there is a crucial lack of relevant preclinical models associating seizures and cortical malformations. Here, we describe a novel rat model with bilateral subcortical band heterotopia (SBH) and examine whether this model develops spontaneous epileptic seizures. METHODS: To generate bilateral SBH in rats, we combined RNAi-mediated knockdown of Dcx and in utero electroporation with a tripolar electrode configuration enabling simultaneous transfection of the two brain hemispheres. To determine whether bilateral SBH leads to epileptiform activity, rats of various ages were implanted for telemetric electrocorticographic recordings and histopathological examination was carried out at the end of the recording sessions. RESULTS: By 2 months, rats with bilateral SBH showed nonconvulsive spontaneous seizures consisting of spike-and-wave discharges (SWDs) with dominant frequencies in the alpha and theta bands and secondarily in higher-frequency bands. SWDs occurred during both the dark and the light period, but were more frequent during quiet awake state than during sleep. Also, SWDs were more frequent and lasted longer at older ages. No sex differences were found. Although frequencies and durations of SWDs were found to be uncorrelated with the size of SBH, SWDs were initiated in some occasions from brain hemispheres comprising a larger SBH. Lastly, SWDs exhibited absence-like pharmacological properties, being temporarily alleviated by ethosuximide administration. SIGNIFICANCE: This novel model of bilateral SBH with spontaneous epilepsy may potentially provide valuable new insights into causality between cortical malformations and seizures, and help translational research aiming at designing novel treatment strategies for epilepsy.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/fisiopatología , Convulsiones/fisiopatología , Vigilia/fisiología , Animales , Modelos Animales de Enfermedad , Proteína Doblecortina , Electrocorticografía/métodos , Electroencefalografía/métodos , Femenino , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Ratas Wistar , Convulsiones/complicaciones
9.
Cereb Cortex ; 28(2): 510-527, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27913431

RESUMEN

The brain-derived neurotrophic factor (BDNF) is synthesized as a precursor, namely proBDNF, which can be processed into mature BDNF (mBDNF). Evidences suggest that proBDNF signaling through p75NTR may account for the emergence of neurological disorders. These findings support the view that the relative availability of mBDNF and proBDNF forms is an important mechanism underlying brain circuit formation and cognitive functions. Here we describe novel insights into the proBDNF/p75NTR mechanisms and function in vivo in modulating neuronal circuit and synaptic plasticity during the first postnatal weeks in rats. Our results showed that increased proBDNF/p75NTR signaling during development maintains a depolarizing γ-aminobutyric acid (GABA) response in a KCC2-dependent manner in mature neuronal cells. This resulted in altered excitation/inhibition balance and enhanced neuronal network activity. The enhanced proBDNF/p75NTR signaling ultimately led to increased seizure susceptibility that was abolished by in vivo injection of function blocking p75NTR antibody. Altogether, our study shed new light on how proBDNF/p75NTR signaling can orchestrate the GABA excitatory/inhibitory developmental sequence leading to depolarizing and excitatory actions of GABA in adulthood and subsequent epileptic disorders.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Precursores de Proteínas/biosíntesis , Receptores de Factor de Crecimiento Nervioso/biosíntesis , Convulsiones/metabolismo , Ácido gamma-Aminobutírico/farmacología , Animales , Femenino , GABAérgicos/metabolismo , GABAérgicos/farmacología , Masculino , Proteínas del Tejido Nervioso , Técnicas de Cultivo de Órganos , Embarazo , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Cereb Cortex ; 28(8): 2976-2990, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29788228

RESUMEN

The neocortex is a 6-layered laminated structure with a precise anatomical and functional organization ensuring proper function. Laminar positioning of cortical neurons, as determined by termination of neuronal migration, is a key determinant of their ability to assemble into functional circuits. However, the exact contribution of laminar placement to dendrite morphogenesis and synapse formation remains unclear. Here we manipulated the laminar position of cortical neurons by knocking down doublecortin (Dcx), a crucial effector of migration, and show that misplaced neurons fail to properly form dendrites, spines, and functional glutamatergic and GABAergic synapses. We further show that knocking down Dcx in properly positioned neurons induces similar but milder defects, suggesting that the laminar misplacement is the primary cause of altered neuronal development. Thus, the specific laminar environment of their fated layers is crucial for the maturation of cortical neurons, and influences their functional integration into developing cortical circuits.


Asunto(s)
Dendritas/fisiología , Neuronas/citología , Corteza Somatosensorial/citología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Homólogo 4 de la Proteína Discs Large/genética , Homólogo 4 de la Proteína Discs Large/metabolismo , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Estimulación Eléctrica , Embrión de Mamíferos , Ácido Glutámico/metabolismo , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Técnicas de Placa-Clamp , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Corteza Somatosensorial/crecimiento & desarrollo , Transducción Genética
11.
Proc Natl Acad Sci U S A ; 111(6): 2337-42, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469796

RESUMEN

Alterations in the formation of brain networks are associated with several neurodevelopmental disorders. Mutations in TBC1 domain family member 24 (TBC1D24) are responsible for syndromes that combine cortical malformations, intellectual disability, and epilepsy, but the function of TBC1D24 in the brain remains unknown. We report here that in utero TBC1D24 knockdown in the rat developing neocortex affects the multipolar-bipolar transition of neurons leading to delayed radial migration. Furthermore, we find that TBC1D24-knockdown neurons display an abnormal maturation and retain immature morphofunctional properties. TBC1D24 interacts with ADP ribosylation factor (ARF)6, a small GTPase crucial for membrane trafficking. We show that in vivo, overexpression of the dominant-negative form of ARF6 rescues the neuronal migration and dendritic outgrowth defects induced by TBC1D24 knockdown, suggesting that TBC1D24 prevents ARF6 activation. Overall, our findings demonstrate an essential role of TBC1D24 in neuronal migration and maturation and highlight the physiological relevance of the ARF6-dependent membrane-trafficking pathway in brain development.


Asunto(s)
Factores de Ribosilacion-ADP/fisiología , Proteínas Portadoras/fisiología , Movimiento Celular/fisiología , Neuronas/citología , Factor 6 de Ribosilación del ADP , Animales , Encéfalo/fisiología , Proteínas Portadoras/genética , Células Cultivadas , Dendritas/fisiología , Proteínas Activadoras de GTPasa , Técnicas de Silenciamiento del Gen , Ácido Glutámico/metabolismo , Proteínas de la Membrana , Proteínas del Tejido Nervioso , Ratas , Sinapsis/metabolismo
12.
Ann Neurol ; 76(3): 428-42, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25074818

RESUMEN

OBJECTIVE: Subcortical band heterotopia (SBH) is a cortical malformation formed when neocortical neurons prematurely stop their migration in the white matter, forming a heterotopic band below the normotopic cortex, and is generally associated with intractable epilepsy. Although it is clear that the band heterotopia and the overlying cortex both contribute to creating an abnormal circuit prone to generate epileptic discharges, it is less understood which part of this circuitry is the most critical. Here, we sought to identify the origin of epileptiform activity in a targeted genetic model of SBH in rats. METHODS: Rats with SBH (Dcx-KD rats) were generated by knocking down the Dcx gene using shRNA vectors transfected into neocortical progenitors of rat embryos. Origin, spatial extent, and laminar profile of bicuculline-induced interictal-like activity on neocortical slices were analyzed by using extracellular recordings from 60-channel microelectrode arrays. Susceptibility to pentylenetetrazole-induced seizures was assessed by electrocorticography in head-restrained nonanesthetized rats. RESULTS: We show that the band heterotopia does not constitute a primary origin for interictal-like epileptiform activity in vitro and is dispensable for generating induced seizures in vivo. Furthermore, we report that most interictal-like discharges originating in the overlying cortex secondarily propagate to the band heterotopia. Importantly, we found that in vivo suppression of neuronal excitability in SBH does not alter the higher propensity of Dcx-KD rats to display seizures. INTERPRETATION: These results suggest a major role of the normotopic cortex over the band heterotopia in generating interictal epileptiform activity and seizures in brains with SBH.


Asunto(s)
Corteza Cerebral/fisiopatología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/fisiopatología , Epilepsia/etiología , Epilepsia/fisiopatología , Neocórtex/fisiopatología , Animales , Bicuculina/farmacología , Corteza Cerebral/efectos de los fármacos , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/complicaciones , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Convulsivantes/farmacología , Modelos Animales de Enfermedad , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Electroencefalografía , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenómenos Electrofisiológicos/fisiología , Epilepsia/inducido químicamente , Técnicas de Silenciamiento del Gen , Proteínas Asociadas a Microtúbulos/genética , Neocórtex/efectos de los fármacos , Red Nerviosa/anomalías , Red Nerviosa/fisiopatología , Neuropéptidos/genética , Pentilenotetrazol/farmacología , Ratas , Ratas Transgénicas , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Corteza Somatosensorial/efectos de los fármacos , Corteza Somatosensorial/fisiopatología
13.
Hum Mol Genet ; 21(5): 1004-17, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22076441

RESUMEN

Periventricular nodular heterotopia (PH) is a human brain malformation caused by defective neuronal migration that results in ectopic neuronal nodules lining the lateral ventricles beneath a normal appearing cortex. Most affected patients have seizures and their cognitive level varies from normal to severely impaired. Mutations in the Filamin-A (or FLNA) gene are the main cause of PH, but the underlying pathological mechanism remains unknown. Although two FlnA knockout mouse strains have been generated, none of them showed the presence of ectopic nodules. To recapitulate the loss of FlnA function in the developing rat brain, we used an in utero RNA interference-mediated knockdown approach and successfully reproduced a PH phenotype in rats comparable with that observed in human patients. In FlnA-knockdown rats, we report that PH results from a disruption of the polarized radial glial scaffold in the ventricular zone altering progression of neural progenitors through the cell cycle and impairing migration of neurons into the cortical plate. Similar alterations of radial glia are observed in human PH brains of a 35-week fetus and a 3-month-old child, harboring distinct FLNA mutations not previously reported. Finally, juvenile FlnA-knockdown rats are highly susceptible to seizures, confirming the reliability of this novel animal model of PH. Our findings suggest that the disorganization of radial glia is the leading cause of PH pathogenesis associated with FLNA mutations. Rattus norvegicus FlnA mRNA (GenBank accession number FJ416060).


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas Contráctiles/metabolismo , Proteínas de Microfilamentos/metabolismo , Neuroglía/fisiología , Heterotopia Nodular Periventricular/metabolismo , Heterotopia Nodular Periventricular/patología , Animales , Movimiento Celular , Proliferación Celular , Corteza Cerebral/embriología , Corteza Cerebral/patología , Ventrículos Cerebrales/patología , Proteínas Contráctiles/genética , Modelos Animales de Enfermedad , Femenino , Filaminas , Humanos , Lactante , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Neocórtex/embriología , Neocórtex/metabolismo , Neocórtex/patología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neuroglía/metabolismo , Neuroglía/ultraestructura , Neuronas/fisiología , Interferencia de ARN , Ratas , Convulsiones/etiología
14.
Brain ; 136(Pt 8): 2457-73, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23831613

RESUMEN

Altered development of the human cerebral cortex can cause severe malformations with often intractable focal epileptic seizures and may participate in common pathologies, notably epilepsy. This raises important conceptual and therapeutic issues. Two missense mutations in the sushi repeat-containing protein SRPX2 had been previously identified in epileptic disorders with or without structural developmental alteration of the speech cortex. In the present study, we aimed to decipher the precise developmental role of SRPX2, to have a better knowledge on the consequences of its mutations, and to start addressing therapeutic issues through the design of an appropriate animal model. Using an in utero Srpx2 silencing approach, we show that SRPX2 influences neuronal migration in the developing rat cerebral cortex. Wild-type, but not the mutant human SRPX2 proteins, rescued the neuronal migration phenotype caused by Srpx2 silencing in utero, and increased alpha-tubulin acetylation. Following in utero Srpx2 silencing, spontaneous epileptiform activity was recorded post-natally. The neuronal migration defects and the post-natal epileptic consequences were prevented early in embryos by maternal administration of tubulin deacetylase inhibitor tubacin. Hence epileptiform manifestations of developmental origin could be prevented in utero, using a transient and drug-based therapeutic protocol.


Asunto(s)
Anilidas/farmacología , Movimiento Celular/genética , Corteza Cerebral/metabolismo , Epilepsia/genética , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Proteínas de la Membrana/genética , Neuronas/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Epilepsia/metabolismo , Silenciador del Gen , Humanos , Neuronas/citología , Neuronas/efectos de los fármacos , Ratas , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
Brain ; 136(Pt 11): 3378-94, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056535

RESUMEN

Periventricular nodular heterotopia is caused by defective neuronal migration that results in heterotopic neuronal nodules lining the lateral ventricles. Mutations in filamin A (FLNA) or ADP-ribosylation factor guanine nucleotide-exchange factor 2 (ARFGEF2) cause periventricular nodular heterotopia, but most patients with this malformation do not have a known aetiology. Using comparative genomic hybridization, we identified 12 patients with developmental brain abnormalities, variably combining periventricular nodular heterotopia, corpus callosum dysgenesis, colpocephaly, cerebellar hypoplasia and polymicrogyria, harbouring a common 1.2 Mb minimal critical deletion in 6q27. These anatomic features were mainly associated with epilepsy, ataxia and cognitive impairment. Using whole exome sequencing in 14 patients with isolated periventricular nodular heterotopia but no copy number variants, we identified one patient with periventricular nodular heterotopia, developmental delay and epilepsy and a de novo missense mutation in the chromosome 6 open reading frame 70 (C6orf70) gene, mapping in the minimal critical deleted region. Using immunohistochemistry and western blots, we demonstrated that in human cell lines, C6orf70 shows primarily a cytoplasmic vesicular puncta-like distribution and that the mutation affects its stability and subcellular distribution. We also performed in utero silencing of C6orf70 and of Phf10 and Dll1, the two additional genes mapping in the 6q27 minimal critical deleted region that are expressed in human and rodent brain. Silencing of C6orf70 in the developing rat neocortex produced periventricular nodular heterotopia that was rescued by concomitant expression of wild-type human C6orf70 protein. Silencing of the contiguous Phf10 or Dll1 genes only produced slightly delayed migration but not periventricular nodular heterotopia. The complex brain phenotype observed in the 6q terminal deletion syndrome likely results from the combined haploinsufficiency of contiguous genes mapping to a small 1.2 Mb region. Our data suggest that, of the genes within this minimal critical region, C6orf70 plays a major role in the control of neuronal migration and its haploinsufficiency or mutation causes periventricular nodular heterotopia.


Asunto(s)
Anomalías Múltiples/genética , Encéfalo/anomalías , Malformaciones del Desarrollo Cortical del Grupo II/genética , Heterotopia Nodular Periventricular/genética , Anomalías Múltiples/patología , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Niño , Deleción Cromosómica , Cromosomas Humanos Par 6/genética , Estudios de Cohortes , Discapacidades del Desarrollo/genética , Epilepsia/genética , Exoma/genética , Femenino , Haploinsuficiencia/genética , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Malformaciones del Desarrollo Cortical del Grupo II/patología , Malformaciones del Desarrollo Cortical del Grupo II/fisiopatología , Mutación/genética , Heterotopia Nodular Periventricular/patología , Heterotopia Nodular Periventricular/fisiopatología , Ratas , Ratas Wistar , Síndrome
16.
Eur J Hum Genet ; 28(12): 1703-1713, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32488097

RESUMEN

While chromosome 1p36 deletion syndrome is one of the most common terminal subtelomeric microdeletion syndrome, 1p36 microduplications are rare events. Polymicrogyria (PMG) is a brain malformation phenotype frequently present in patients with 1p36 monosomy. The gene whose haploinsufficiency could cause this phenotype remains to be identified. We used high-resolution arrayCGH in patients with various forms of PMG in order to identify chromosomal variants associated to the malformation and characterized the genes included in these regions in vitro and in vivo. We identified the smallest case of 1p36 duplication reported to date in a patient presenting intellectual disability, microcephaly, epilepsy, and perisylvian polymicrogyria. The duplicated segment is intrachromosomal, duplicated in mirror and contains two genes: enolase 1 (ENO1) and RERE, both disrupted by the rearrangement. Gene expression analysis performed using the patient cells revealed a reduced expression, mimicking haploinsufficiency. We performed in situ hybridization to describe the developmental expression profile of the two genes in mouse development. In addition, we used in utero electroporation of shRNAs to show that Eno1 inactivation in the rat causes a brain development defect. These experiments allowed us to define the ENO1 gene as the most likely candidate to contribute to the brain malformation phenotype of the studied patient and consequently a candidate to contribute to the malformations of the cerebral cortex observed in patients with 1p36 monosomy.


Asunto(s)
Biomarcadores de Tumor/genética , Duplicación Cromosómica , Cromosomas Humanos Par 1/genética , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Fosfopiruvato Hidratasa/genética , Polimicrogiria/genética , Proteínas Supresoras de Tumor/genética , Adulto , Animales , Encéfalo/embriología , Encéfalo/metabolismo , Femenino , Humanos , Discapacidad Intelectual/patología , Ratones , Microcefalia/genética , Microcefalia/patología , Neurogénesis , Fosfopiruvato Hidratasa/metabolismo , Polimicrogiria/patología , Ratas , Ratas Wistar , Síndrome
17.
Front Cell Neurosci ; 13: 473, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680876

RESUMEN

Studies conducted in human and rodent models have suggested that preexisting neurodevelopmental defects could predispose immature brains to febrile seizures (FS). However, the impact of the anatomical extent of preexisting cortical malformations on FS susceptibility was never assessed. Here, we induced hyperthermic seizures (HS) in rats with bilateral subcortical band heterotopia (SBH) and found variable degrees of HS susceptibility depending on inter-individual anatomical differences in size and extent of SBH. This indicates that an association exists between the overall extent or location of a cortical malformation, and the predisposition to FS. This also suggests that various predisposing factors and underlying causes may contribute to the etiology of complex FS.

18.
Brain Res ; 1711: 146-155, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30689978

RESUMEN

Subcortical band heterotopia (SBH), also known as doublecortex syndrome, is a malformation of cortical development resulting from mutations in the doublecortin gene (DCX). It is characterized by a lack of migration of cortical neurons that accumulate in the white matter forming a heterotopic band. Patients with SBH may present mild to moderate intellectual disability as well as epilepsy. The SBH condition can be modeled in rats by in utero knockdown (KD) of Dcx. The affected cells form an SBH reminiscent of that observed in human patients and the animals develop a chronic epileptic condition in adulthood. Here, we investigated if the presence of a SBH is sufficient to induce cognitive impairment in juvenile Dcx-KD rats, before the onset of epilepsy. Using a wide range of behavioral tests, we found that the presence of SBH did not appear to affect motor control or somatosensory processing. In addition, cognitive abilities such as learning, short-term and long-term memory, were normal in pre-epileptic Dcx-KD rats. We suggest that the SBH presence is not sufficient to impair these behavioral functions.


Asunto(s)
Conducta Animal , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/psicología , Cognición , Modelos Animales de Enfermedad , Epilepsia/genética , Discapacidad Intelectual/genética , Animales , Ansiedad/genética , Enfermedades Asintomáticas , Movimiento Celular , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/complicaciones , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/embriología , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Electroporación , Conducta Exploratoria , Sustancia Gris/anomalías , Sustancia Gris/embriología , Aprendizaje , Aprendizaje por Laberinto , Memoria , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Mosaicismo , Neuropéptidos/deficiencia , Neuropéptidos/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/toxicidad , Ratas , Prueba de Desempeño de Rotación con Aceleración Constante , Sensación , Sustancia Blanca/anomalías , Sustancia Blanca/embriología
19.
Cell Death Differ ; 26(11): 2464-2478, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30858606

RESUMEN

Mutations in TBC1D24 are described in patients with a spectrum of neurological diseases, including mild and severe epilepsies and complex syndromic phenotypes such as Deafness, Onycodystrophy, Osteodystrophy, Mental Retardation and Seizure (DOORS) syndrome. The product of TBC1D24 is a multifunctional protein involved in neuronal development, regulation of synaptic vesicle trafficking, and protection from oxidative stress. Although pathogenic mutations in TBC1D24 span the entire coding sequence, no clear genotype/phenotype correlations have emerged. However most patients bearing predicted loss of function mutations exhibit a severe neurodevelopmental disorder. Aim of the study is to investigate the impact of TBC1D24 knockdown during the first stages of neuronal differentiation when axonal specification and outgrowth take place. In rat cortical primary neurons silenced for TBC1D24, we found defects in axonal specification, the maturation of axonal initial segment and action potential firing. The axonal phenotype was accompanied by an impairment of endocytosis at the growth cone and an altered activation of the TBC1D24 molecular partner ADP ribosylation factor 6. Accordingly, acute knockdown of TBC1D24 in cerebrocortical neurons in vivo analogously impairs callosal projections. The axonal defect was also investigated in human induced pluripotent stem cell-derived neurons from patients carrying TBC1D24 mutations. Reprogrammed neurons from a patient with severe developmental encephalopathy show significant axon formation defect that were absent from reprogrammed neurons of a patient with mild early onset epilepsy. Our data reveal that alterations of membrane trafficking at the growth cone induced by TBC1D24 loss of function cause axonal and excitability defects. The axonal phenotype correlates with the disease severity and highlight an important role for TBC1D24 in connectivity during brain development.


Asunto(s)
Transporte Axonal/fisiología , Axones/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proyección Neuronal/fisiología , Neuronas/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Animales , Proteínas Activadoras de GTPasa/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades del Sistema Nervioso/genética , Neurogénesis/fisiología , Estrés Oxidativo/fisiología , Dominios Proteicos/genética , Ratas , Ratas Wistar
20.
J Neurosci ; 27(33): 8779-89, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17699660

RESUMEN

Axonal degeneration represents one of the earliest pathological features in motor neuron diseases. We here studied the underlying molecular mechanisms in progressive motor neuronopathy (pmn) mice mutated in the tubulin-specific chaperone TBCE. We demonstrate that TBCE is a peripheral membrane-associated protein that accumulates at the Golgi apparatus. In pmn mice, TBCE is destabilized and disappears from the Golgi apparatus of motor neurons, and microtubules are lost in distal axons. The axonal microtubule loss proceeds retrogradely in parallel with the axonal dying back process. These degenerative changes are inhibited in a dose-dependent manner by transgenic TBCE complementation that restores TBCE expression at the Golgi apparatus. In cultured motor neurons, the pmn mutation, interference RNA-mediated TBCE depletion, and brefeldin A-mediated Golgi disruption all compromise axonal tubulin routing. We conclude that motor axons critically depend on axonal tubulin routing from the Golgi apparatus, a process that involves TBCE and possibly other tubulin chaperones.


Asunto(s)
Aparato de Golgi/metabolismo , Chaperonas Moleculares/fisiología , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/ultraestructura , Degeneración Nerviosa/patología , Tubulina (Proteína)/metabolismo , Animales , Células Cultivadas , Progresión de la Enfermedad , Embrión de Mamíferos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Aparato de Golgi/efectos de los fármacos , Proteínas Fluorescentes Verdes , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Microtúbulos/metabolismo , Microtúbulos/patología , Microtúbulos/ultraestructura , Chaperonas Moleculares/genética , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/patología , ARN Mensajero/biosíntesis , ARN Interferente Pequeño/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Médula Espinal/metabolismo , Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA