Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Spectrosc ; 62(6): 649-54, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18559152

RESUMEN

The feasibility of liquid-phase evanescent-wave cavity ring-down spectroscopy (EW-CRDS) for surface-binding studies under flow-injection analysis (FIA) conditions is demonstrated. The EW-CRDS setup consists of an anti-reflection coated Dove prism inside a linear cavity (with standard or super-polishing of the total internal reflective (TIR) surface). A teflon spacer with an elliptical hole clamped on this surface acts as a 20 muL sized flow cell. The baseline noise of this system is of the order of 10(-4) absorbance units; the baseline remains stable over a prolonged time and the prism surface does not become contaminated during repeated injections of the reversibly adsorbing test dyes Crystal Violet (CV) and Direct Red 10 (DR10). At typical FIA or liquid chromatography (LC) flow rates, the system has sufficient specificity to discriminate between species with different surface affinities. For CV a much stronger decrease in ring-down time is observed than calculated based on its bulk concentration and the effective depth probed by the evanescent wave, indicating binding of this positively charged dye to the negatively charged prism surface. The amount of adsorption can be influenced by adjusting the flow rate or the eluent composition. At a flow rate of 0.5 mL/min, an enrichment factor of 60 was calculated for CV; for the poorly adsorbing dye DR10 it is 5. Super-polishing of the already polished TIR surface works counter-productively. The adsorbing dye Crystal Violet has a detection limit of 3 muM for the standard polished surface; less binding occurs on the super-polished surface and the detection limit is 5 muM. Possible applications of EW-CRDS for studying surface binding or the development of bio-assays are discussed.

2.
J Chromatogr A ; 918(1): 25-36, 2001 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-11403453

RESUMEN

The on-line coupling of liquid chromatography (LC) and Raman spectroscopy (RS) via an entirely plastic liquid-core waveguide (LCW) was optimized in terms of excitation wavelength of the laser, especially in relation to the fluorescence background, and the length of the LCW. Excitation at 632.8 nm (He-Ne laser) was found to be a good compromise between a wavelength long enough to strongly reduce the fluorescence background and, on the other hand, short enough to avoid (re)-absorption of laser light and Raman signals by H2O in LCWs of considerable length. This conclusion is supported by a theoretical discussion on the optimization of LCW lengths as function of the excitation wavelength for H2O and 2H2O. When using the He-Ne laser the optimum length is approximately 50 cm for H2O; this corresponds to a detection cell volume of 19 microl for an LCW of 220 microm I.D., which is fully compatible with conventional-size LC. The influence of an organic modifier, usually necessary for reversed-phase LC, on the free spectral window was evaluated. The potential applicability of LC-LCW-RS was shown for a mixture of adenosine 5'-monophosphate (AMP), guanosine 5'-monophosphate (GMP) and uridine 5'-monophosphate (UMP), utilizing an aqueous eluent without the addition of a modifier. Improved detectability was achieved by using the stopped-flow mode and applying a large-volume-injection procedure (injection volume: 200 microl). Under these conditions, the limit of identification for AMP, GMP and UMP was in the 0.1-0.5-mg/ml range.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría Raman/métodos , Adenosina Monofosfato/aislamiento & purificación , Fluorescencia , Guanosina Monofosfato/aislamiento & purificación , Sensibilidad y Especificidad , Uridina Monofosfato/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA