Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Pain ; 20: 17448069241230420, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379503

RESUMEN

Ca2+ imaging is frequently used in the investigation of sensory neuronal function and nociception. In vitro imaging of acutely dissociated sensory neurons using membrane-permeant fluorescent Ca2+ indicators remains the most common approach to study Ca2+ signalling in sensory neurons. Fluo4 is a popular choice of single-wavelength indicator due to its brightness, high affinity for Ca2+ and ease of use. However, unlike ratiometric indicators, the emission intensity from single-wavelength indicators can be affected by indicator concentration, optical path length, excitation intensity and detector efficiency. As such, without careful calibration, it can be difficult to draw inferences from differences in the magnitude of Ca2+ transients recorded using Fluo4. Here, we show that a method scarcely used in sensory neurophysiology - first proposed by Maravall and colleagues (2000) - can provide reliable estimates of absolute cytosolic Ca2+ concentration ([Ca2+]cyt) in acutely dissociated sensory neurons using Fluo4. This method is straightforward to implement; is applicable to any high-affinity single-wavelength Ca2+ indicator with a large dynamic range; and provides estimates of [Ca2+]cyt in line with other methods, including ratiometric imaging. Use of this method will improve the granularity of sensory neuron Ca2+ imaging data obtained with Fluo4.


Asunto(s)
Calcio , Células Receptoras Sensoriales
2.
Artículo en Inglés | MEDLINE | ID: mdl-38915279

RESUMEN

The intestinal barrier plays a crucial role in homeostasis, both by facilitating absorption of nutrients and fluids, and providing a tight shield to prevent the invasion by either pathogen or commensal microorganisms. Intestinal barrier malfunction is associated with systemic inflammation, oxidative stress, and decreased insulin sensitivity, which may lead to the dysregulation of other tissues. Therefore, a deeper understanding of physiological aspects related to an enhanced barrier function is of significant scientific and clinical relevance. The naked mole-rat has many unusual biological features, including attenuated colonic neuron sensitivity to acid and bradykinin, and resistance to chemical-induced intestinal damage. However, insight into their intestinal barrier physiology is scarce. Here, we observed notable macroscopic and microscopic differences in intestinal tissue structure between naked mole-rats and mice. Moreover, naked mole-rats showed increased number of larger goblet cells and elevated mucus content. In measuring gut permeability, naked mole-rats showed reduced permeability compared to mice, measured as transepithelial electrical resistance, especially in ileum. Furthermore, intestinal ion secretion induced by serotonin, bradykinin, histamine, and capsaicin was significantly reduced in naked mole-rats compared to mice, despite the expression of receptors for all these agonists. In addition, naked mole-rats exhibited reduced pro-secretory responses to the non-selective adenylate cyclase activator forskolin. Collectively, these findings indicate that naked mole-rats possess a robust and hard-to-penetrate gastrointestinal barrier, that is resistant to environmental and endogenous irritants. Naked mole-rats may therefore provide valuable insights into the physiology of the intestinal barrier and set the stage for the development of innovative and effective therapies.

3.
J Neurochem ; 2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36906887

RESUMEN

Visceral hypersensitivity, a hallmark of disorders of the gut-brain axis, is associated with exposure to early-life stress (ELS). Activation of neuronal ß3-adrenoceptors (AR) has been shown to alter central and peripheral levels of tryptophan and reduce visceral hypersensitivity. In this study, we aimed to determine the potential of a ß3-AR agonist in reducing ELS-induced visceral hypersensitivity and possible underlying mechanisms. Here, ELS was induced using the maternal separation (MS) model, where Sprague Dawley rat pups were separated from their mother in early life (postnatal day 2-12). Visceral hypersensitivity was confirmed in adult offspring using colorectal distension (CRD). CL-316243, a ß3-AR agonist, was administered to determine anti-nociceptive effects against CRD. Distension-induced enteric neuronal activation as well as colonic secretomotor function were assessed. Tryptophan metabolism was determined both centrally and peripherally. For the first time, we showed that CL-316243 significantly ameliorated MS-induced visceral hypersensitivity. Furthermore, MS altered plasma tryptophan metabolism and colonic adrenergic tone, while CL-316243 reduced both central and peripheral levels of tryptophan and affected secretomotor activity in the presence of tetrodotoxin. This study supports the beneficial role of CL-316243 in reducing ELS-induced visceral hypersensitivity, and suggests that targeting the ß3-AR can significantly influence gut-brain axis activity through modulation of enteric neuronal activation, tryptophan metabolism, and colonic secretomotor activity which may synergistically contribute to offsetting the effects of ELS.

4.
Am J Physiol Gastrointest Liver Physiol ; 325(5): G436-G445, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37667839

RESUMEN

In numerous subtypes of central and peripheral neurons, small and intermediate conductance Ca2+-activated K+ (SK and IK, respectively) channels are important regulators of neuronal excitability. Transcripts encoding SK channel subunits, as well as the closely related IK subunit, are coexpressed in the soma of colonic afferent neurons with receptors for the algogenic mediators ATP and bradykinin, P2X3 and B2, highlighting the potential utility of these channels as drug targets for the treatment of abdominal pain in gastrointestinal diseases such as irritable bowel syndrome. Despite this, pretreatment with the dual SK/IK channel opener SKA-31 had no effect on the colonic afferent response to ATP, bradykinin, or noxious ramp distention of the colon. Inhibition of SK or IK channels with apamin or TRAM-34, respectively, yielded no change in spontaneous baseline afferent activity, indicating these channels are not tonically active. In contrast to its lack of effect in electrophysiological experiments, comparable concentrations of SKA-31 abolished ongoing peristaltic activity in the colon ex vivo. Treatment with the KV7 channel opener retigabine blunted the colonic afferent response to all applied stimuli. Our data therefore highlight the potential utility of KV7, but not SK/IK, channel openers as analgesic agents for the treatment of abdominal pain.NEW & NOTEWORTHY Despite marked coexpression of small (Kcnn1, Kcnn2) and intermediate (Kcnn4) conductance calcium-activated potassium channel transcripts with P2X3 (P2rx3) or bradykinin B2 (Bdkrb2) receptors in colonic sensory neurons, pharmacological activation of these channels had no effect on the colonic afferent response to ATP, bradykinin or luminal distension of the colon. This is in contrast to the robust inhibitory effect of the KV7 channel opener, retigabine.


Asunto(s)
Bradiquinina , Carbamatos , Fenilendiaminas , Humanos , Bradiquinina/farmacología , Dolor Abdominal , Adenosina Trifosfato/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
5.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G250-G261, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36749569

RESUMEN

The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Dolor Visceral , Humanos , Interleucina-13/farmacología , Nociceptores , Proteínas Quinasas p38 Activadas por Mitógenos , Capsaicina/farmacología , Colon/inervación
6.
J Physiol ; 600(16): 3819-3836, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35775903

RESUMEN

Visceral pain is a leading cause of morbidity in gastrointestinal diseases, which is exacerbated by the gut-related side-effects of many analgesics. New treatments are needed and further understanding of the mediators and mechanisms underpinning visceral nociception in disease states is required to facilitate this. The pro-inflammatory cytokine TNFα is linked to pain in both patients with inflammatory bowel disease and irritable bowel syndrome, and has been shown to sensitize colonic sensory neurons. Somatic, TNFα-triggered thermal and mechanical hypersensitivity is mediated by TRPV1 signalling and p38 MAPK activity respectively, downstream of TNFR1 receptor activation. We therefore hypothesized that TNFR1-evoked p38 MAPK activity may also be responsible for TNFα sensitization of colonic afferent responses to the TRPV1 agonist capsaicin, and noxious distension of the bowel. Using Ca2+ imaging of dorsal root ganglion sensory neurons, we observed TNFα-mediated increases in intracellular [Ca2+ ] and sensitization of capsaicin responses. The sensitizing effects of TNFα were dependent on TNFR1 expression and attenuated by p38 MAPK inhibition. Consistent with these findings, ex vivo colonic afferent fibre recordings demonstrated an enhanced response to noxious ramp distention of the bowel and bath application of capsaicin following TNFα pre-treatment. Responses were reversed by p38 MAPK inhibition and absent in tissue from TNFR1 knockout mice. Our findings demonstrate a contribution of TNFR1, p38 MAPK and TRPV1 to TNFα-induced sensitization of colonic afferents, highlighting the potential utility of these drug targets for the treatment of visceral pain in gastrointestinal disease. KEY POINTS: The pro-inflammatory cytokine TNFα is elevated in gastrointestinal disease and sensitizes colonic afferents via modulation of TRPA1 and NaV 1.8 activity. We further develop this understanding by demonstrating a role for p38 MAPK and TRPV1 in TNFα-mediated colonic afferent sensitization. Specifically, we show that: TNFα sensitizes sensory neurons and colonic afferents to the TRPV1 agonist capsaicin. TNFα-mediated sensitization of sensory neurons and colonic nociceptors is dependent on TNFR1 expression. TNFα sensitization of sensory neurons and colonic afferents to capsaicin and noxious ramp distension is abolished by inhibition of p38 MAPK. Collectively these data support the utility of targeting TNFα, TNFR1 and their downstream signalling via p38 MAPK for the treatment of visceral pain in gastrointestinal disease.


Asunto(s)
Nociceptores , Dolor Visceral , Animales , Capsaicina/farmacología , Ganglios Espinales/metabolismo , Ratones , Nociceptores/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/farmacología , Canales Catiónicos TRPV/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Dolor Visceral/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Rheumatology (Oxford) ; 59(3): 662-667, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31410487

RESUMEN

OBJECTIVES: Knee OA is a leading global cause of morbidity. This study investigates the effects of knee SF from patients with OA on the activity of dorsal root ganglion sensory neurons that innervate the knee (knee neurons) as a novel translational model of disease-mediated nociception in human OA. METHODS: Dissociated cultures of mouse knee neurons were incubated overnight or acutely stimulated with OA-SF (n = 4) and fluid from healthy donors (n = 3, Ctrl-SF). Electrophysiology and Ca2+-imaging determined changes in electrical excitability and transient receptor potential channel function, respectively. RESULTS: Incubation with OA-SF induced knee neuron hyperexcitability compared to Ctrl-SF: the resting membrane potential significantly increased (F(2, 92) = 5.6, P = 0.005, ANOVA) and the action potential threshold decreased (F(2, 92) = 8.8, P = 0.0003, ANOVA); TRPV1 (F(2, 445) = 3.7, P = 0.02) and TRPM8 (F(2, 174) = 11.1, P < 0.0001, ANOVA) channel activity also increased. Acute application of Ctrl-SF and OA-SF increased intracellular Ca2+ concentration via intra- and extracellular Ca2+ sources. CONCLUSION: Human OA-SF acutely activated knee neurons and induced hyperexcitability indicating that mediators present in OA-SF stimulate sensory nerve activity and thereby give rise to knee pain. Taken together, this study provides proof-of-concept for a new method to study the ability of mediators present in joints of patients with arthritis to stimulate nociceptor activity and hence identify clinically relevant drug targets for treating knee pain.


Asunto(s)
Artralgia/fisiopatología , Ganglios Espinales/fisiopatología , Osteoartritis de la Rodilla/fisiopatología , Células Receptoras Sensoriales/fisiología , Líquido Sinovial , Animales , Femenino , Humanos , Articulación de la Rodilla/fisiopatología , Masculino , Ratones
8.
Gut ; 68(4): 633-644, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29483303

RESUMEN

OBJECTIVE: Integration of nutritional, microbial and inflammatory events along the gut-brain axis can alter bowel physiology and organism behaviour. Colonic sensory neurons activate reflex pathways and give rise to conscious sensation, but the diversity and division of function within these neurons is poorly understood. The identification of signalling pathways contributing to visceral sensation is constrained by a paucity of molecular markers. Here we address this by comprehensive transcriptomic profiling and unsupervised clustering of individual mouse colonic sensory neurons. DESIGN: Unbiased single-cell RNA-sequencing was performed on retrogradely traced mouse colonic sensory neurons isolated from both thoracolumbar (TL) and lumbosacral (LS) dorsal root ganglia associated with lumbar splanchnic and pelvic spinal pathways, respectively. Identified neuronal subtypes were validated by single-cell qRT-PCR, immunohistochemistry (IHC) and Ca2+-imaging. RESULTS: Transcriptomic profiling and unsupervised clustering of 314 colonic sensory neurons revealed seven neuronal subtypes. Of these, five neuronal subtypes accounted for 99% of TL neurons, with LS neurons almost exclusively populating the remaining two subtypes. We identify and classify neurons based on novel subtype-specific marker genes using single-cell qRT-PCR and IHC to validate subtypes derived from RNA-sequencing. Lastly, functional Ca2+-imaging was conducted on colonic sensory neurons to demonstrate subtype-selective differential agonist activation. CONCLUSIONS: We identify seven subtypes of colonic sensory neurons using unbiased single-cell RNA-sequencing and confirm translation of patterning to protein expression, describing sensory diversity encompassing all modalities of colonic neuronal sensitivity. These results provide a pathway to molecular interrogation of colonic sensory innervation in health and disease, together with identifying novel targets for drug development.


Asunto(s)
Colon/inervación , Células Receptoras Sensoriales/clasificación , Análisis de Secuencia de ARN , Transcriptoma , Animales , Inmunohistoquímica , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
J Biol Chem ; 293(46): 17906-17916, 2018 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-30262663

RESUMEN

Glycosaminoglycans (GAGs) and GAG-degrading enzymes have wide-ranging applications in the medical and biotechnological industries. The former are also an important nutrient source for select species of the human gut microbiota (HGM), a key player in host-microbial interactions. How GAGs are metabolized by the HGM is therefore of interest and has been extensively investigated in the model human gut microbe Bacteroides thetaiotaomicron. The presence of as-yet uncharacterized GAG-inducible genes in its genome and of related species, however, is testament to our incomplete understanding of this process. Nevertheless, it presents a potential opportunity for the discovery of additional GAG-degrading enzymes. Here, we investigated a gene of unknown function (BT_3328) from the chondroitin sulfate (CS) utilization locus of B. thetaiotaomicron NMR and UV spectroscopic assays revealed that it encodes a novel polysaccharide lyase (PL), hereafter referred to as BtCDH, reflecting its source (B. thetaiotaomicron (Bt)) and its ability to degrade the GAGs CS, dermatan sulfate (DS), and hyaluronic acid (HA). When incubated with HA, BtCDH generated a series of unsaturated HA sugars, including Δ4,5UA-GlcNAc, Δ4,5UA-GlcNAc-GlcA-GlcNac, Δ4,5UA-[GlcNAc-GlcA]2-GlcNac, and Δ4,5UA-[GlcNAc-GlcA]3-GlcNac, as end products and hence was classed as endo-acting. A combination of genetic and biochemical assays revealed that BtCDH localizes to the cell surface of B. thetaiotaomicron where it enables extracellular GAG degradation. BtCDH homologs were also detected in several other HGM species, and we therefore propose that it represents the founding member of a new polysaccharide lyase family (PL29). The current discovery also contributes new insights into CS metabolism by the HGM.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides thetaiotaomicron/enzimología , Sulfatos de Condroitina/metabolismo , Dermatán Sulfato/metabolismo , Ácido Hialurónico/metabolismo , Polisacárido Liasas/metabolismo , Proteínas Bacterianas/química , Concentración de Iones de Hidrógeno , Metales Pesados/química , Polisacárido Liasas/química , Temperatura
10.
J Biol Chem ; 293(14): 5150-5159, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29444825

RESUMEN

Periplasmic solute-binding proteins in bacteria are involved in the active transport of nutrients into the cytoplasm. In marine bacteria of the genus Vibrio, a chitooligosaccharide-binding protein (CBP) is thought to be the major solute-binding protein controlling the rate of chitin uptake in these bacteria. However, the molecular mechanism of the CBP involvement in chitin metabolism has not been elucidated. Here, we report the structure and function of a recombinant chitooligosaccharide-binding protein from Vibrio harveyi, namely VhCBP, expressed in Escherichia coli Isothermal titration calorimetry revealed that VhCBP strongly binds shorter chitooligosaccharides ((GlcNAc) n , where n = 2, 3, and 4) with affinities that are considerably greater than those for glycoside hydrolase family 18 and 19 chitinases but does not bind longer ones, including insoluble chitin polysaccharides. We also found that VhCBP comprises two domains with flexible linkers and that the domain-domain interface forms the sugar-binding cleft, which is not long extended but forms a small cavity. (GlcNAc)2 bound to this cavity, apparently triggering a closed conformation of VhCBP. Trp-363 and Trp-513, which stack against the two individual GlcNAc rings, likely make a major contribution to the high affinity of VhCBP for (GlcNAc)2 The strong chitobiose binding, followed by the conformational change of VhCBP, may facilitate its interaction with an active-transport system in the inner membrane of Vibrio species.


Asunto(s)
Quitina/química , Vibrio/metabolismo , Secuencia de Aminoácidos , Metabolismo de los Hidratos de Carbono/fisiología , Carbohidratos , Proteínas Portadoras/metabolismo , Quitina/análogos & derivados , Quitina/metabolismo , Quitinasas/metabolismo , Quitosano , Cristalografía por Rayos X/métodos , Modelos Moleculares , Oligosacáridos , Periplasma/metabolismo , Relación Estructura-Actividad
12.
Gut ; 67(1): 86-96, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27654583

RESUMEN

OBJECTIVE: The development of effective visceral analgesics free of deleterious gut-specific side effects is a priority. We aimed to develop a reproducible methodology to study visceral nociception in human tissue that could aid future target identification and drug evaluation. DESIGN: Electrophysiological (single unit) responses of visceral afferents to mechanical (von Frey hair (VFH) and stretch) and chemical (bradykinin and ATP) stimuli were examined. Thus, serosal afferents (putative nociceptors) were used to investigate the effect of tegaserod, and transient receptor potential channel, vanilloid 4 (TRPV4) modulation on mechanical responses. RESULTS: Two distinct afferent fibre populations, serosal (n=23) and muscular (n=21), were distinguished based on their differences in sensitivity to VFH probing and tissue stretch. Serosal units displayed sensitivity to key algesic mediators, bradykinin (6/14 units tested) and ATP (4/10), consistent with a role as polymodal nociceptors, while muscular afferents are largely insensitive to bradykinin (0/11) and ATP (1/10). Serosal nociceptor mechanosensitivity was attenuated by tegaserod (-20.8±6.9%, n=6, p<0.05), a treatment for IBS, or application of HC067047 (-34.9±10.0%, n=7, p<0.05), a TRPV4 antagonist, highlighting the utility of the preparation to examine the mechanistic action of existing drugs or novel analgesics. Repeated application of bradykinin or ATP produced consistent afferent responses following desensitisation to the first application, demonstrating their utility as test stimuli to evaluate analgesic activity. CONCLUSIONS: Functionally distinct subpopulations of human visceral afferents can be demonstrated and could provide a platform technology to further study nociception in human tissue.


Asunto(s)
Fármacos Gastrointestinales/farmacología , Intestinos/inervación , Nociceptores/efectos de los fármacos , Adenosina Trifosfato/farmacología , Antiinflamatorios no Esteroideos/farmacología , Bradiquinina/análogos & derivados , Bradiquinina/farmacología , Antagonistas de los Receptores de Bradiquinina/farmacología , Evaluación Preclínica de Medicamentos/métodos , Humanos , Indoles/farmacología , Intestinos/efectos de los fármacos , Morfolinas/farmacología , Nociceptores/fisiología , Estimulación Física/métodos , Pirroles/farmacología , Agonistas de Receptores de Serotonina/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Técnicas de Cultivo de Tejidos
13.
J Physiol ; 596(17): 4237-4251, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29917237

RESUMEN

KEY POINTS: Tenascin-X (TNX) is an extracellular matrix glycoprotein with anti-adhesive properties in skin and joints. Here we report the novel finding that TNX is expressed in human and mouse gut tissue where it is exclusive to specific subpopulations of neurones. Our studies with TNX-deficient mice show impaired defecation and neural control of distal colonic motility that can be rescued with a 5-HT4 receptor agonist. However, colonic secretion is unchanged. They are also susceptible to internal rectal intussusception. Colonic afferent sensitivity is increased in TNX-deficient mice. Correspondingly, there is increased density of and sensitivity of putative nociceptive fibres in TNX-deficient mucosa. A group of TNX-deficient patients report symptoms highly consistent with those in the mouse model. These findings suggest TNX plays entirely different roles in gut to non-visceral tissues - firstly a role in enteric motor neurones and secondly a role influencing nociceptive sensory neurones Studying further the mechanisms by which TNX influences neuronal function will lead to new targets for future treatment. ABSTRACT: The extracellular matrix (ECM) is not only an integral structural molecule, but is also critical for a wide range of cellular functions. The glycoprotein tenascin-X (TNX) predominates in the ECM of tissues like skin and regulates tissue structure through anti-adhesive interactions with collagen. Monogenic TNX deficiency causes painful joint hypermobility and skin hyperelasticity, symptoms characteristic of hypermobility Ehlers Danlos syndrome (hEDS). hEDS patients also report consistently increased visceral pain and gastrointestinal (GI) dysfunction. We investigated whether there is a direct link between TNX deficiency and GI pain or motor dysfunction. We set out first to learn where TNX is expressed in human and mouse, then determine how GI function, specifically in the colon, is disordered in TNX-deficient mice and humans of either sex. In human and mouse tissue, TNX was predominantly associated with cholinergic colonic enteric neurones, which are involved in motor control. TNX was absent from extrinsic nociceptive peptidergic neurones. TNX-deficient mice had internal rectal prolapse and a loss of distal colonic contractility which could be rescued by prokinetic drug treatment. TNX-deficient patients reported increased sensory and motor GI symptoms including abdominal pain and constipation compared to controls. Despite absence of TNX from nociceptive colonic neurones, neuronal sprouting and hyper-responsiveness to colonic distension was observed in the TNX-deficient mice. We conclude that ECM molecules are not merely support structures but an integral part of the microenvironment particularly for specific populations of colonic motor neurones where TNX exerts functional influences.


Asunto(s)
Colon/patología , Matriz Extracelular/metabolismo , Enfermedades Gastrointestinales/patología , Neuronas Motoras/patología , Células Receptoras Sensoriales/patología , Tenascina/metabolismo , Animales , Movimiento Celular , Colon/metabolismo , Femenino , Enfermedades Gastrointestinales/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas Motoras/metabolismo , Células Receptoras Sensoriales/metabolismo , Tenascina/genética
14.
Am J Physiol Gastrointest Liver Physiol ; 315(4): G464-G472, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29848022

RESUMEN

Peripheral sensitization of nociceptors during disease has long been recognized as a leading cause of inflammatory pain. However, a growing body of data generated over the last decade has led to the increased understanding that peripheral sensitization is also an important mechanism driving abdominal pain in highly prevalent functional bowel disorders, in particular, irritable bowel syndrome (IBS). As such, the development of drugs that target pain-sensing nerves innervating the bowel has the potential to be a successful analgesic strategy for the treatment of abdominal pain in both organic and functional gastrointestinal diseases. Despite the success of recent peripherally restricted approaches for the treatment of IBS, not all drugs that have shown efficacy in animal models of visceral pain have reduced pain end points in clinical trials of IBS patients, suggesting innate differences in the mechanisms of pain processing between rodents and humans and, in particular, how we model disease states. To address this gap in our understanding of peripheral nociception from the viscera and the body in general, several groups have developed experimental systems to study nociception in isolated human tissue and neurons, the findings of which we discuss in this review. Studies of human tissue identify a repertoire of human primary afferent subtypes comparable to rodent models including a nociceptor population, the targeting of which will shape future analgesic development efforts. Detailed mechanistic studies in human sensory neurons combined with unbiased RNA-sequencing approaches have revealed fundamental differences in not only receptor/channel expression but also peripheral pain pathways.


Asunto(s)
Intestinos/fisiología , Síndrome del Colon Irritable/fisiopatología , Nocicepción , Investigación Biomédica Traslacional/métodos , Animales , Ganglios Espinales/fisiología , Ganglios Espinales/fisiopatología , Humanos , Intestinos/fisiopatología , Síndrome del Colon Irritable/terapia , Nociceptores/fisiología
15.
J Neurosci ; 36(8): 2364-76, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911685

RESUMEN

Activation of visceral nociceptors by inflammatory mediators contributes to visceral hypersensitivity and abdominal pain associated with many gastrointestinal disorders. Purine and pyrimidine nucleotides (e.g., ATP and UTP) are strongly implicated in this process following their release from epithelial cells during mechanical stimulation of the gut, and from immune cells during inflammation. Actions of ATP are mediated through both ionotropic P2X receptors and metabotropic P2Y receptors. P2X receptor activation causes excitation of visceral afferents; however, the impact of P2Y receptor activation on visceral afferents innervating the gut is unclear. Here we investigate the effects of stimulating P2Y receptors in isolated mouse colonic sensory neurons, and visceral nociceptor fibers in mouse and human nerve-gut preparations. Additionally, we investigate the role of Nav1.9 in mediating murine responses. The application of UTP (P2Y2 and P2Y4 agonist) sensitized colonic sensory neurons by increasing action potential firing to current injection and depolarizing the membrane potential. The application of ADP (P2Y1, P2Y12, and P2Y13 agonist) also increased action potential firing, an effect blocked by the selective P2Y1 receptor antagonist MRS2500. UTP or ADP stimulated afferents, including mouse and human visceral nociceptors, in nerve-gut preparations. P2Y1 and P2Y2 transcripts were detected in 80% and 56% of retrogradely labeled colonic neurons, respectively. Nav1.9 transcripts colocalized in 86% of P2Y1-positive and 100% of P2Y2-positive colonic neurons, consistent with reduced afferent fiber responses to UTP and ADP in Na(v)1.9(-/-) mice. These data demonstrate that P2Y receptor activation stimulates mouse and human visceral nociceptors, highlighting P2Y-dependent mechanisms in the generation of visceral pain during gastrointestinal disease.


Asunto(s)
Colon/metabolismo , Nociceptores/metabolismo , Receptores Purinérgicos P2Y/biosíntesis , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Colon/efectos de los fármacos , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Canal de Sodio Activado por Voltaje NAV1.9/fisiología , Nucleótidos de Purina/farmacología , Nucleótidos de Pirimidina/farmacología , Especificidad de la Especie
16.
J Physiol ; 595(8): 2661-2679, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28105664

RESUMEN

KEY POINTS: Voltage-gated sodium channels play a fundamental role in determining neuronal excitability. Specifically, voltage-gated sodium channel subtype NaV 1.7 is required for sensing acute and inflammatory somatic pain in mice and humans but its significance in pain originating from the viscera is unknown. Using comparative behavioural models evoking somatic and visceral pain pathways, we identify the requirement for NaV 1.7 in regulating somatic (noxious heat pain threshold) but not in visceral pain signalling. These results enable us to better understand the mechanisms underlying the transduction of noxious stimuli from the viscera, suggest that the investigation of pain pathways should be undertaken in a modality-specific manner and help to direct drug discovery efforts towards novel visceral analgesics. ABSTRACT: Voltage-gated sodium channel NaV 1.7 is required for acute and inflammatory pain in mice and humans but its significance for visceral pain is unknown. Here we examine the role of NaV 1.7 in visceral pain processing and the development of referred hyperalgesia using a conditional nociceptor-specific NaV 1.7 knockout mouse (NaV 1.7Nav1.8 ) and selective small-molecule NaV 1.7 antagonist PF-5198007. NaV 1.7Nav1.8 mice showed normal nociceptive behaviours in response to intracolonic application of either capsaicin or mustard oil, stimuli known to evoke sustained nociceptor activity and sensitization following tissue damage, respectively. Normal responses following induction of cystitis by cyclophosphamide were also observed in both NaV 1.7Nav1.8 and littermate controls. Loss, or blockade, of NaV 1.7 did not affect afferent responses to noxious mechanical and chemical stimuli in nerve-gut preparations in mouse, or following antagonism of NaV 1.7 in resected human appendix stimulated by noxious distending pressures. However, expression analysis of voltage-gated sodium channel α subunits revealed NaV 1.7 mRNA transcripts in nearly all retrogradely labelled colonic neurons, suggesting redundancy in function. By contrast, using comparative somatic behavioural models we identify that genetic deletion of NaV 1.7 (in NaV 1.8-expressing neurons) regulates noxious heat pain threshold and that this can be recapitulated by the selective NaV 1.7 antagonist PF-5198007. Our data demonstrate that NaV 1.7 (in NaV 1.8-expressing neurons) contributes to defined pain pathways in a modality-dependent manner, modulating somatic noxious heat pain, but is not required for visceral pain processing, and advocate that pharmacological block of NaV 1.7 alone in the viscera may be insufficient in targeting chronic visceral pain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/deficiencia , Nociceptores/metabolismo , Dolor Visceral/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Capsaicina/toxicidad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Planta de la Mostaza/toxicidad , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor Nociceptivo/inducido químicamente , Dolor Nociceptivo/genética , Dolor Nociceptivo/metabolismo , Nociceptores/efectos de los fármacos , Aceites de Plantas/toxicidad , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Bloqueadores de los Canales de Sodio/farmacología , Dolor Visceral/inducido químicamente , Dolor Visceral/genética
17.
Mol Pain ; 13: 1744806917709371, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28566000

RESUMEN

Background Chronic visceral pain is a defining symptom of many gastrointestinal disorders. The KV7 family (KV7.1-KV7.5) of voltage-gated potassium channels mediates the M current that regulates excitability in peripheral sensory nociceptors and central pain pathways. Here, we use a combination of immunohistochemistry, gut-nerve electrophysiological recordings in both mouse and human tissues, and single-cell qualitative real-time polymerase chain reaction of gut-projecting sensory neurons, to investigate the contribution of peripheral KV7 channels to visceral nociception. Results Immunohistochemical staining of mouse colon revealed labelling of KV7 subtypes (KV7.3 and KV7.5) with CGRP around intrinsic enteric neurons of the myenteric plexuses and within extrinsic sensory fibres along mesenteric blood vessels. Treatment with the KV7 opener retigabine almost completely abolished visceral afferent firing evoked by the algogen bradykinin, in agreement with significant co-expression of mRNA transcripts by single-cell qualitative real-time polymerase chain reaction for KCNQ subtypes and the B2 bradykinin receptor in retrogradely labelled extrinsic sensory neurons from the colon. Retigabine also attenuated responses to mechanical stimulation of the bowel following noxious distension (0-80 mmHg) in a concentration-dependent manner, whereas the KV7 blocker XE991 potentiated such responses. In human bowel tissues, KV7.3 and KV7.5 were expressed in neuronal varicosities co-labelled with synaptophysin and CGRP, and retigabine inhibited bradykinin-induced afferent activation in afferent recordings from human colon. Conclusions We show that KV7 channels contribute to the sensitivity of visceral sensory neurons to noxious chemical and mechanical stimuli in both mouse and human gut tissues. As such, peripherally restricted KV7 openers may represent a viable therapeutic modality for the treatment of gastrointestinal pathologies.


Asunto(s)
Colon/metabolismo , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ3/metabolismo , Receptores de Bradiquinina/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Antracenos/farmacología , Electrofisiología , Humanos , Inmunohistoquímica , Canales de Potasio KCNQ/antagonistas & inhibidores , Canal de Potasio KCNQ3/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL , Plexo Mientérico/metabolismo , Sinaptofisina/metabolismo
18.
Gastroenterology ; 150(4): 875-87.e9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26752109

RESUMEN

BACKGROUND & AIMS: Histamine sensitizes the nociceptor transient reporter potential channel V1 (TRPV1) and has been shown to contribute to visceral hypersensitivity in animals. We investigated the role of TRPV1 in irritable bowel syndrome (IBS) and evaluated if an antagonist of histamine receptor H1 (HRH1) could reduce symptoms of patients in a randomized placebo-controlled trial. METHODS: By using live calcium imaging, we compared activation of submucosal neurons by the TRPV1 agonist capsaicin in rectal biopsy specimens collected from 9 patients with IBS (ROME 3 criteria) and 15 healthy subjects. The sensitization of TRPV1 by histamine, its metabolite imidazole acetaldehyde, and supernatants from biopsy specimens was assessed by calcium imaging of mouse dorsal root ganglion neurons. We then performed a double-blind trial of patients with IBS (mean age, 31 y; range, 18-65 y; 34 female). After a 2-week run-in period, subjects were assigned randomly to groups given either the HRH1 antagonist ebastine (20 mg/day; n = 28) or placebo (n = 27) for 12 weeks. Rectal biopsy specimens were collected, barostat studies were performed, and symptoms were assessed (using the validated gastrointestinal symptom rating scale) before and after the 12-week period. Patients were followed up for an additional 2 weeks. Abdominal pain, symptom relief, and health-related quality of life were assessed on a weekly basis. The primary end point of the study was the effect of ebastine on the symptom score evoked by rectal distension. RESULTS: TRPV1 responses of submucosal neurons from patients with IBS were potentiated compared with those of healthy volunteers. Moreover, TRPV1 responses of submucosal neurons from healthy volunteers could be potentiated by their pre-incubation with histamine; this effect was blocked by the HRH1 antagonist pyrilamine. Supernatants from rectal biopsy specimens from patients with IBS, but not from the healthy volunteers, sensitized TRPV1 in mouse nociceptive dorsal root ganglion neurons via HRH1; this effect could be reproduced by histamine and imidazole acetaldehyde. Compared with subjects given placebo, those given ebastine had reduced visceral hypersensitivity, increased symptom relief (ebastine 46% vs placebo 13%; P = .024), and reduced abdominal pain scores (ebastine 39 ± 23 vs placebo 62 ± 22; P = .0004). CONCLUSIONS: In studies of rectal biopsy specimens from patients, we found that HRH1-mediated sensitization of TRPV1 is involved in IBS. Ebastine, an antagonist of HRH1, reduced visceral hypersensitivity, symptoms, and abdominal pain in patients with IBS. Inhibitors of this pathway might be developed as a new treatment approach for IBS. ClinicalTrials.gov no: NCT01144832.


Asunto(s)
Analgésicos/uso terapéutico , Butirofenonas/uso terapéutico , Fármacos Gastrointestinales/uso terapéutico , Antagonistas de los Receptores Histamínicos H1/uso terapéutico , Síndrome del Colon Irritable/tratamiento farmacológico , Neuronas/efectos de los fármacos , Umbral del Dolor/efectos de los fármacos , Piperidinas/uso terapéutico , Receptores Histamínicos H1/efectos de los fármacos , Recto/inervación , Canales Catiónicos TRPV/metabolismo , Dolor Abdominal/metabolismo , Dolor Abdominal/fisiopatología , Dolor Abdominal/prevención & control , Adolescente , Adulto , Anciano , Analgésicos/efectos adversos , Bélgica , Biopsia , Butirofenonas/efectos adversos , Señalización del Calcio/efectos de los fármacos , Método Doble Ciego , Femenino , Fármacos Gastrointestinales/efectos adversos , Antagonistas de los Receptores Histamínicos H1/efectos adversos , Humanos , Síndrome del Colon Irritable/diagnóstico , Síndrome del Colon Irritable/metabolismo , Síndrome del Colon Irritable/fisiopatología , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Dimensión del Dolor , Piperidinas/efectos adversos , Calidad de Vida , Receptor Cross-Talk/efectos de los fármacos , Receptores Histamínicos H1/metabolismo , Inducción de Remisión , Encuestas y Cuestionarios , Factores de Tiempo , Resultado del Tratamiento , Adulto Joven
19.
Gut ; 64(4): 618-26, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25015642

RESUMEN

OBJECTIVE: Inhibition of food intake and glucose homeostasis are both promoted when nutrients stimulate enteroendocrine cells (EEC) to release gut hormones. Several specific nutrient receptors may be located on EEC that respond to dietary sugars, amino acids and fatty acids. Bypass surgery for obesity and type II diabetes works by shunting nutrients to the distal gut, where it increases activation of nutrient receptors and mediator release, but cellular mechanisms of activation are largely unknown. We determined which nutrient receptors are expressed in which gut regions and in which cells in mouse and human, how they are associated with different types of EEC, how they are activated leading to hormone and 5-HT release. DESIGN AND RESULTS: mRNA expression of 17 nutrient receptors and EEC mediators was assessed by quantitative PCR and found throughout mouse and human gut epithelium. Many species similarities emerged, in particular the dense expression of several receptors in the distal gut. Immunolabelling showed specific colocalisation of receptors with EEC mediators PYY and GLP-1 (L-cells) or 5-HT (enterochromaffin cells). We exposed isolated proximal colonic mucosa to specific nutrients, which recruited signalling pathways within specific EEC extracellular receptor-regulated kinase (p-ERK) and calmodulin kinase II (pCAMKII), as shown by subsequent immunolabelling, and activated release of these mediators. Aromatic amino acids activated both pathways in mouse, but in humans they induced only pCAMKII, which was colocalised mainly with 5-HT expression. Activation was pertussis toxin-sensitive. Fatty acid (C12) potently activated p-ERK in human in all EEC types and evoked potent release of all three mediators. CONCLUSIONS: Specific nutrient receptors associate with distinct activation pathways within EEC. These may provide discrete, complementary pharmacological targets for intervention in obesity and type II diabetes.


Asunto(s)
Células Enteroendocrinas/fisiología , Alimentos , Receptores de Superficie Celular/fisiología , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA