Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Exp Brain Res ; 238(4): 883-895, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32162051

RESUMEN

This study investigates whether real-time auditory feedback has a direct behavioural or perceptual effect on novices performing a golf putting task with limited visual feedback. Due to its significant role in the success of a putt, club head speed was selected as the parameter for sonification. Different combinations of synthesisers, timbral modulations, scales, and mappings were developed to examine whether particular sound classes influenced performance. When compared to trials with static pink noise, we found that, despite their vision being limited at impact, participants were able to use different types of sonification to significantly reduce variability in their distance from the target and ball location estimation. These results suggest that concurrent sound can play an important role in reducing variability in behavioural performance and related perceptual estimations. In addition, we found that, when compared to trials with static pink noise, participants were able to use sonification to significantly lower their average impact velocity. In the discussion, we offer some trends and observations relative to the different sound synthesis parameters and their effects on behavioural and perceptual performance.


Asunto(s)
Percepción Auditiva/fisiología , Retroalimentación Sensorial/fisiología , Golf/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Gestos , Humanos , Juicio/fisiología , Masculino
2.
J Neurophysiol ; 114(5): 2764-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26334018

RESUMEN

Humans can remarkably adapt their motor behavior to novel environmental conditions, yet it remains unclear which factors enable us to transfer what we have learned with one limb to the other. Here we tested the hypothesis that interlimb transfer of sensorimotor adaptation is determined by environmental conditions but also by individual characteristics. We specifically examined the adaptation of unconstrained reaching movements to a novel Coriolis, velocity-dependent force field. Right-handed subjects sat at the center of a rotating platform and performed forward reaching movements with the upper limb toward flashed visual targets in prerotation, per-rotation (i.e., adaptation), and postrotation tests. Here only the dominant arm was used during adaptation and interlimb transfer was assessed by comparing performance of the nondominant arm before and after dominant-arm adaptation. Vision and no-vision conditions did not significantly influence interlimb transfer of trajectory adaptation, which on average was significant but limited. We uncovered a substantial heterogeneity of interlimb transfer across subjects and found that interlimb transfer can be qualitatively and quantitatively predicted for each healthy young individual. A classifier showed that in our study, interlimb transfer could be predicted based on the subject's task performance, most notably motor variability during learning, and his or her laterality quotient. Positive correlations suggested that variability of motor performance and lateralization of arm movement control facilitate interlimb transfer. We further show that these individual characteristics can predict the presence and the magnitude of interlimb transfer of left-handers. Overall, this study suggests that individual characteristics shape the way the nervous system can generalize motor learning.


Asunto(s)
Adaptación Fisiológica , Desempeño Psicomotor , Transferencia de Experiencia en Psicología/fisiología , Adulto , Fenómenos Biomecánicos , Retroalimentación Sensorial , Femenino , Humanos , Masculino , Propiocepción , Extremidad Superior/fisiología , Adulto Joven
3.
Res Q Exerc Sport ; 92(3): 301-310, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32101511

RESUMEN

Purpose: To study whether novices can use sonification to enhance golf putting performance and swing movements. Method: Forty participants first performed a series of 2 m and 4 m putts, where swing velocities associated with successful trials were used to calculate their mean velocity profile (MVP). Participants were then divided into four groups with different auditory conditions: static pink noise unrelated to movement, auditory guidance based on personalized MVP, and two sonification strategies that mapped the real-time error between observed and MVP swings to modulate either the stereo display or roughness of the auditory guidance signal. Participants then performed a series of 2 m and 4 m putts with the auditory condition designated to their group. Results: In general our results showed significant correlations between swing movement variability and putting performance for all sonification groups. More specifically, in comparison to the group exposed to static pink noise, participants who were presented auditory guidance significantly reduced the deviation from their average swing movement. In addition, participants exposed to error-based sonification with stereo display modulation significantly lowered their variability in timing swing movements. These results provide further evidence of the benefits of sonification for novices performing complex motor skill tasks. Conclusions: More importantly, our findings suggest participants were able to better use online error-based sonification rather than auditory guidance to reduce variability in the execution and timing of their movements.


Asunto(s)
Rendimiento Atlético/fisiología , Retroalimentación Sensorial/fisiología , Golf/fisiología , Destreza Motora/fisiología , Movimiento/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
4.
Front Physiol ; 8: 821, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29104544

RESUMEN

Understanding the impact of weightlessness on human behavior during the forthcoming long-term space missions is of critical importance, especially when considering the efficiency of goal-directed movements in these unusual environments. Several studies provided a large set of evidence that gravity is taken into account during the planning stage of arm reaching movements to optimally anticipate its consequence upon the moving limbs. However, less is known about sensorimotor changes required to face weightless environments when individuals have to perform fast and accurate goal-directed actions with whole-body displacement. We thus aimed at characterizing kinematic features of whole-body reaching movements in microgravity, involving high spatiotemporal constraints of execution, to question whether and how humans are able to maintain the performance of a functional behavior in the standards of normogravity execution. Seven participants were asked to reach as fast and as accurately as possible visual targets while standing during microgravity episodes in parabolic flight. Small and large targets were presented either close or far from the participants (requiring, in the latter case, additional whole-body displacement). Results reported that participants successfully performed the reaching task with general temporal features of movement (e.g., movement speed) close to land observations. However, our analyses also demonstrated substantial kinematic changes related to the temporal structure of focal movement and the postural strategy to successfully perform -constrained- whole-body reaching movements in microgravity. These immediate reorganizations are likely achieved by rapidly taking into account the absence of gravity in motor preparation and execution (presumably from cues about body limbs unweighting). Specifically, when compared to normogravity, the arm deceleration phase substantially increased. Furthermore, greater whole-body forward displacements due to smaller trunk flexions occurred when reaching far targets in microgravity. Remarkably, these changes of focal kinematics and postural strategy appear close to those previously reported when participants performed the same task underwater with neutral buoyancy applied to body limbs. Overall, these novel findings reveal that humans are able to maintain the performance of functional goal-directed whole-body actions in weightlessness by successfully managing spatiotemporal constraints of execution in this unusual environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA