Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 622(7983): 594-602, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821698

RESUMEN

Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities1,2. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database3. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical and gene neighbourhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter.


Asunto(s)
Metagenoma , Metagenómica , Microbiología , Proteínas , Análisis por Conglomerados , Metagenoma/genética , Metagenómica/métodos , Proteínas/química , Proteínas/clasificación , Proteínas/genética , Bases de Datos de Proteínas , Conformación Proteica
2.
Nat Methods ; 19(4): 429-440, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35396482

RESUMEN

Evaluating metagenomic software is key for optimizing metagenome interpretation and focus of the Initiative for the Critical Assessment of Metagenome Interpretation (CAMI). The CAMI II challenge engaged the community to assess methods on realistic and complex datasets with long- and short-read sequences, created computationally from around 1,700 new and known genomes, as well as 600 new plasmids and viruses. Here we analyze 5,002 results by 76 program versions. Substantial improvements were seen in assembly, some due to long-read data. Related strains still were challenging for assembly and genome recovery through binning, as was assembly quality for the latter. Profilers markedly matured, with taxon profilers and binners excelling at higher bacterial ranks, but underperforming for viruses and Archaea. Clinical pathogen detection results revealed a need to improve reproducibility. Runtime and memory usage analyses identified efficient programs, including top performers with other metrics. The results identify challenges and guide researchers in selecting methods for analyses.


Asunto(s)
Metagenoma , Metagenómica , Archaea/genética , Metagenómica/métodos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Programas Informáticos
3.
BMC Bioinformatics ; 21(1): 406, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933482

RESUMEN

BACKGROUND: Bioinformatic workflows frequently make use of automated genome assembly and protein clustering tools. At the core of most of these tools, a significant portion of execution time is spent in determining optimal local alignment between two sequences. This task is performed with the Smith-Waterman algorithm, which is a dynamic programming based method. With the advent of modern sequencing technologies and increasing size of both genome and protein databases, a need for faster Smith-Waterman implementations has emerged. Multiple SIMD strategies for the Smith-Waterman algorithm are available for CPUs. However, with the move of HPC facilities towards accelerator based architectures, a need for an efficient GPU accelerated strategy has emerged. Existing GPU based strategies have either been optimized for a specific type of characters (Nucleotides or Amino Acids) or for only a handful of application use-cases. RESULTS: In this paper, we present ADEPT, a new sequence alignment strategy for GPU architectures that is domain independent, supporting alignment of sequences from both genomes and proteins. Our proposed strategy uses GPU specific optimizations that do not rely on the nature of sequence. We demonstrate the feasibility of this strategy by implementing the Smith-Waterman algorithm and comparing it to similar CPU strategies as well as the fastest known GPU methods for each domain. ADEPT's driver enables it to scale across multiple GPUs and allows easy integration into software pipelines which utilize large scale computational systems. We have shown that the ADEPT based Smith-Waterman algorithm demonstrates a peak performance of 360 GCUPS and 497 GCUPs for protein based and DNA based datasets respectively on a single GPU node (8 GPUs) of the Cori Supercomputer. Overall ADEPT shows 10x faster performance in a node-to-node comparison against a corresponding SIMD CPU implementation. CONCLUSIONS: ADEPT demonstrates a performance that is either comparable or better than existing GPU strategies. We demonstrated the efficacy of ADEPT in supporting existing bionformatics software pipelines by integrating ADEPT in MetaHipMer a high-performance denovo metagenome assembler and PASTIS a high-performance protein similarity graph construction pipeline. Our results show 10% and 30% boost of performance in MetaHipMer and PASTIS respectively.


Asunto(s)
Biología Computacional/métodos , Alineación de Secuencia/métodos , Algoritmos , Humanos
4.
Philos Trans A Math Phys Eng Sci ; 378(2166): 20190394, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-31955674

RESUMEN

Genomic datasets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share these data with the research community, but some of these genomic data analysis problems require large-scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high-end parallel systems today and place different requirements on programming support, software libraries and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high-performance genomics analysis, including alignment, profiling, clustering and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or 'motifs' that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'.

5.
Nucleic Acids Res ; 46(6): e33, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29315405

RESUMEN

Biological networks capture structural or functional properties of relevant entities such as molecules, proteins or genes. Characteristic examples are gene expression networks or protein-protein interaction networks, which hold information about functional affinities or structural similarities. Such networks have been expanding in size due to increasing scale and abundance of biological data. While various clustering algorithms have been proposed to find highly connected regions, Markov Clustering (MCL) has been one of the most successful approaches to cluster sequence similarity or expression networks. Despite its popularity, MCL's scalability to cluster large datasets still remains a bottleneck due to high running times and memory demands. Here, we present High-performance MCL (HipMCL), a parallel implementation of the original MCL algorithm that can run on distributed-memory computers. We show that HipMCL can efficiently utilize 2000 compute nodes and cluster a network of ∼70 million nodes with ∼68 billion edges in ∼2.4 h. By exploiting distributed-memory environments, HipMCL clusters large-scale networks several orders of magnitude faster than MCL and enables clustering of even bigger networks. HipMCL is based on MPI and OpenMP and is freely available under a modified BSD license.


Asunto(s)
Algoritmos , Análisis por Conglomerados , Biología Computacional/métodos , Redes Reguladoras de Genes , Cadenas de Markov , Expresión Génica , Mapas de Interacción de Proteínas/genética
6.
Nat Comput Sci ; 2(9): 577-583, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38177468

RESUMEN

We introduce HUNTRESS, a computational method for mutational intratumor heterogeneity inference from noisy genotype matrices derived from single-cell sequencing data, the running time of which is linear with the number of cells and quadratic with the number of mutations. We prove that, under reasonable conditions, HUNTRESS computes the true progression history of a tumor with high probability. On simulated and real tumor sequencing data, HUNTRESS is demonstrated to be faster than available alternatives with comparable or better accuracy. Additionally, the progression histories of tumors inferred by HUNTRESS on real single-cell sequencing datasets agree with the best known evolution scenarios for the associated tumors.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Análisis de Secuencia , Mutación
7.
Sci Rep ; 10(1): 10689, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32612216

RESUMEN

Metagenome sequence datasets can contain terabytes of reads, too many to be coassembled together on a single shared-memory computer; consequently, they have only been assembled sample by sample (multiassembly) and combining the results is challenging. We can now perform coassembly of the largest datasets using MetaHipMer, a metagenome assembler designed to run on supercomputers and large clusters of compute nodes. We have reported on the implementation of MetaHipMer previously; in this paper we focus on analyzing the impact of very large coassembly. In particular, we show that coassembly recovers a larger genome fraction than multiassembly and enables the discovery of more complete genomes, with lower error rates, whereas multiassembly recovers more dominant strain variation. Being able to coassemble a large dataset does not preclude one from multiassembly; rather, having a fast, scalable metagenome assembler enables a user to more easily perform coassembly and multiassembly, and assemble both abundant, high strain variation genomes, and low-abundance, rare genomes. We present several assemblies of terabyte datasets that could never be coassembled before, demonstrating MetaHipMer's scaling power. MetaHipMer is available for public use under an open source license and all datasets used in the paper are available for public download.


Asunto(s)
Biología Computacional/métodos , Genoma Bacteriano/genética , Metagenoma/genética , Metagenómica/métodos , Algoritmos , Computadores , Microbiota/genética , Pseudoalteromonas/genética , Pseudoalteromonas/aislamiento & purificación , Análisis de Secuencia de ADN/métodos
8.
Genome Biol ; 16: 26, 2015 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-25637298

RESUMEN

Polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible to construct a mapping population.


Asunto(s)
Pan , Genoma de Planta , Poliploidía , Análisis de Secuencia de ADN/métodos , Triticum/genética , Mapeo Cromosómico , Mapeo Contig , ADN Complementario/genética , Ligamiento Genético , Variación Genética , Homocigoto , Nucleótidos/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA