Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genes Dev ; 25(10): 1041-51, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21576264

RESUMEN

Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Estrés Fisiológico/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/fisiología , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/genética , Células Cultivadas , Resistencia a Antineoplásicos/genética , Células Madre Embrionarias/enzimología , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Hipoxia/patología , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Serina-Treonina Quinasas TOR/metabolismo , Trasplante Heterólogo , Regulación hacia Arriba
2.
Mol Cell Biol ; 22(1): 57-68, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11739722

RESUMEN

CAK1 encodes a protein kinase in Saccharomyces cerevisiae whose sole essential mitotic role is to activate the Cdc28p cyclin-dependent kinase by phosphorylation of threonine-169 in its activation loop. SMK1 encodes a sporulation-specific mitogen-activated protein (MAP) kinase homolog that is required to regulate the postmeiotic events of spore wall assembly. CAK1 was previously identified as a multicopy suppressor of a weakened smk1 mutant and shown to be required for spore wall assembly. Here we show that Smk1p, like other MAP kinases, is phosphorylated in its activation loop and that Smk1p is not activated in a cak1 missense mutant. Strains harboring a hyperactivated allele of CDC28 that is CAK1 independent and that lacks threonine-169 still require CAK1 to activate Smk1p. The data indicate that Cak1p functions upstream of Smk1p by activating a protein kinase other than Cdc28p. We also found that mutants lacking CAK1 are blocked early in meiotic development, as they show substantial delays in premeiotic DNA synthesis and defects in the expression of sporulation-specific genes, including IME1. The early meiotic role of Cak1p, like the postmeiotic role in the Smk1p pathway, is CDC28 independent. The data indicate that Cak1p activates multiple steps in meiotic development through multiple protein kinase targets.


Asunto(s)
Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Quinasas Ciclina-Dependientes , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Esporas Fúngicas/fisiología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/química , ADN de Hongos/biosíntesis , Activación Enzimática , Epítopos/química , Epítopos/metabolismo , Genes Fúngicos , Meiosis/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Mutagénesis Sitio-Dirigida , Fosforilación , Estructura Secundaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Quinasa Activadora de Quinasas Ciclina-Dependientes
3.
Science ; 329(5996): 1201-5, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20647423

RESUMEN

The mammalian adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Cromatina/metabolismo , Histonas/metabolismo , Estrés Fisiológico , Transcripción Genética , Proteínas Quinasas Activadas por AMP/química , Adaptación Fisiológica , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Células Cultivadas , Inmunoprecipitación de Cromatina , Activación Enzimática , Regulación de la Expresión Génica , Histonas/química , Humanos , Ratones , Fosforilación , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
4.
Mol Cell Biol ; 29(16): 4352-62, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19528232

RESUMEN

Meiotic development in Saccharomyces cerevisiae (sporulation) is controlled by the sequential transcription of temporally distinct sets of meiosis-specific genes. The induction of middle genes controls exit from meiotic prophase, the completion of the nuclear divisions, and spore formation. Middle promoters are controlled through DNA elements termed middle sporulation elements (MSEs) that are bound by the Sum1 repressor during vegetative growth and by the Ndt80 activator during meiosis. It has been proposed that the induction of middle promoters is controlled by competition between Ndt80 and Sum1 for MSE occupancy. Here, we show that the Sum1 repressor can be removed from middle promoters in meiotic cells independent of Ndt80 expression. This process requires the phosphorylation of Sum1 by the meiosis-specific cyclin-dependent kinase-like kinase Ime2. The deletion of HST1, which encodes a Sir2 paralog that interacts with Sum1, bypasses the requirement for this phosphorylation. These findings suggest that in the presence of Ndt80, Sum1 may be displaced from MSEs through a competition-based mechanism but that in the absence of Ndt80, Sum1 is removed from chromatin in a separate pathway requiring the phosphorylation of Sum1 by Ime2 and the inhibition of Hst1.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Meiosis/fisiología , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Nucleares/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Sirtuina 2 , Sirtuinas/genética , Sirtuinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Eukaryot Cell ; 3(4): 910-8, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15302824

RESUMEN

Rsc1 and Rsc2 are alternative bromodomain-containing subunits of the ATP-dependent RSC chromatin remodeling complex in Saccharomyces cerevisiae. Smk1 is a sporulation-specific mitogen-activated protein kinase homolog that is required for the postmeiotic events of spore formation. In this study we show that RSC1 and RSC2 are haploinsufficient for spore formation in a smk1 hypomorph. Moreover, diploids lacking Rsc1 or Rsc2 show a subset of smk1-like phenotypes. High-copy-number RSC1 plasmids do not suppress rsc2-Delta/rsc2-Delta sporulation defects, and high-copy-number RSC2 plasmids do not suppress rsc1-Delta/rsc1-Delta sporulation defects. Mid-late sporulation-specific genes, which are normally expressed while key steps in spore assembly occur and which include genes that are required for spore wall formation, are not expressed in cells lacking Rsc1 or Rsc2. We speculate that the combined action of Rsc1 and Rsc2 at mid-late promoters is specifically required for the proper expression of this uniquely timed set of genes. Our data suggest that Smk1 and Rsc1/2 define parallel pathways that converge to provide signaling information and the expression of gene products, respectively, that are required for spore morphogenesis.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas Cromosómicas no Histona/genética , Meiosis/fisiología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Esporas Fúngicas/fisiología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA