Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Glycobiology ; 30(1): 49-57, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31701135

RESUMEN

The opportunistic pathogen Clostridium perfringens possesses the ability to colonize the protective mucin layer in the gastrointestinal tract. To assist this, the C. perfringens genome contains a battery of genes encoding glycoside hydrolases (GHs) that are likely active on mucin glycans, including four genes encoding family 84 GHs: CpGH84A (NagH), CpGH84B (NagI), CpGH84C (NagJ) and CpGH84D (NagK). To probe the potential advantage gained by the expansion of GH84 enzymes in C. perfringens, we undertook the structural and functional characterization of the CpGH84 catalytic modules. Here, we show that these four CpGH84 catalytic modules act as ß-N-acetyl-D-glucosaminidases able to hydrolyze N- and O-glycan motifs. CpGH84A and CpGH84D displayed a substrate specificity restricted to terminal ß-1,2- and ß-1,6-linked N-acetyl-D-glucosamine (GlcNAc). CpGH84B and CpGH84C appear more promiscuous with activity on terminal ß-1,2-, ß-1,3- and ß-1,6-linked GlcNAc; both possess some activity toward ß-1,4-linked GlcNAc, but this is dependent upon which monosaccharide it is linked to. Furthermore, all the CpGH84s have different optimum pHs ranging from 5.2 to 7.0. Consistent with their ß-N-acetyl-D-glucosaminidase activities, the structures of the four catalytic modules revealed similar folds with a catalytic site including a conserved -1 subsite that binds GlcNAc. However, nonconserved residues in the vicinity of the +1 subsite suggest different accommodation of the sugar preceding the terminal GlcNAc, resulting in subtly different substrate specificities. This structure-function comparison of the four GH84 catalytic modules from C. perfringens reveals their different biochemical properties, which may relate to how they are deployed in the bacterium's niche in the host.


Asunto(s)
Clostridium perfringens/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Glicósido Hidrolasas/genética , Humanos , Modelos Moleculares , Conformación Proteica
2.
Neurobiol Dis ; 112: 1-13, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29277556

RESUMEN

The mechanisms that lead to neuronal death in neurodegenerative diseases are poorly understood. Prion diseases, like many more common disorders such as Alzheimer's and Parkinson's diseases, are characterized by the progressive accumulation of misfolded disease-specific proteins. The earliest changes observed in brain tissue include a reduction in synaptic number and retraction of dendritic spines, followed by reduced length and branching of neurites. These pathologies are observable during presymptomatic stages of disease and are accompanied by altered expression of transcripts that include miRNAs. Here we report that miR-16 localized within hippocampal CA1 neurons is increased during early prion disease. Modulating miR-16 expression in mature murine hippocampal neurons by expression from a lentivirus, thus mimicking the modest increase seen in vivo, was found to induce neurodegeneration. This was characterized by retraction of neurites and reduced branching. We performed immunoprecipitation of the miR-16 enriched RISC complex, and identified associated transcripts from the co-immunoprecipitated RNA (Ago2 RIP-Chip). These transcripts were enriched with predicted binding sites for miR-16, including the validated miR-16 targets APP and BCL2, as well as numerous novel targets. In particular, genes within the neurotrophin receptor mediated MAPK/ERK pathway were potentially regulated by miR-16; including TrkB (NTRK2), MEK1 (MAP2K1) and c-Raf (RAF). Increased miR-16 expression in neurons during presymptomatic prion disease and reduction in proteins involved in MAPK/ERK signaling represents a possible mechanism by which neurite length and branching are decreased during early stages of disease.


Asunto(s)
Enfermedades Asintomáticas , Hipocampo/metabolismo , MicroARNs/biosíntesis , Neuritas/metabolismo , Enfermedades por Prión/metabolismo , ARN Mensajero/biosíntesis , Animales , Células Cultivadas , Femenino , Redes Reguladoras de Genes/fisiología , Hipocampo/patología , Ratones , MicroARNs/genética , Neuritas/patología , Neuronas/metabolismo , Neuronas/patología , Embarazo , Enfermedades por Prión/genética , Enfermedades por Prión/patología , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA