Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 225(10): 1811-1821, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35267014

RESUMEN

BACKGROUND: Depriving microbes of iron is critical to host defense. Hemeproteins, the largest source of iron within vertebrates, are abundant in infected tissues in aspergillosis due to hemorrhage, but Aspergillus species have been thought to lack heme import mechanisms. We hypothesized that heme provides iron to Aspergillus during invasive pneumonia, thereby worsening the outcomes of the infection. METHODS: We assessed the effect of heme on fungal phenotype in various in vitro conditions and in a neutropenic mouse model of invasive pulmonary aspergillosis. RESULTS: In mice with neutropenic invasive aspergillosis, we found a progressive and compartmentalized increase in lung heme iron. Fungal cells cultured under low iron conditions took up heme, resulting in increased fungal iron content, resolution of iron starvation, increased conidiation, and enhanced resistance to oxidative stress. Intrapulmonary administration of heme to mice with neutropenic invasive aspergillosis resulted in markedly increased lung fungal burden, lung injury, and mortality, whereas administration of heme analogs or heme with killed Aspergillus did not. Finally, infection caused by fungal germlings cultured in the presence of heme resulted in a more severe infection. CONCLUSIONS: Invasive aspergillosis induces local hemolysis in infected tissues, thereby supplying heme iron to the fungus, leading to lethal infection.


Asunto(s)
Aspergilosis , Neumonía , Animales , Aspergillus , Aspergillus fumigatus , Hemo , Hierro , Ratones
2.
J Infect Dis ; 224(7): 1225-1235, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-33822981

RESUMEN

Chronic granulomatous disease (CGD) results from deficiency of nicotinamide adenine dinucleotide phosphate(NADPH) oxidase and impaired reactive oxygen species (ROS) generation. This leads to impaired killing of Aspergillus and, independently, a pathologic hyperinflammatory response to the organism. We hypothesized that neutrophil-derived ROS inhibit the inflammatory response to Aspergillus and that acute lung injury in CGD is due to failure of this regulation. Mice with gp91phox deficiency, the most common CGD mutation, had more severe lung injury, increased neutrophilinfiltration, and increased lung tumor necrosis factor (TNF) after Aspergillus challenge compared with wild-types. Neutrophils were surprisingly the predominant source of TNF in gp91phox-deficient lungs. TNF neutralization inhibited neutrophil recruitment in gp91phox-deficient mice and protected from lung injury. We propose that, in normal hosts, Aspergillus stimulates TNF-dependent neutrophil recruitment to the lungs and neutrophil-derived ROS limit inflammation. In CGD, in contrast, recruited neutrophils are the dominant source of TNF, promoting further neutrophil recruitment in a pathologic positive-feedback cycle, resulting in progressive lung injury.


Asunto(s)
Lesión Pulmonar Aguda/etiología , Hongos/genética , Enfermedad Granulomatosa Crónica , Neutrófilos/inmunología , Factor de Necrosis Tumoral alfa , Animales , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/inmunología , Ratones , Ratones Noqueados , NADPH Oxidasas/inmunología , Especies Reactivas de Oxígeno , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Ann Plast Surg ; 87(2): 150-155, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34253698

RESUMEN

BACKGROUND: Fibrocytes are bone marrow mesenchymal precursors with a surface phenotype compatible with leukocytes, fibroblasts, and hematopoietic progenitors that have been shown to traffic to wound healing sites in response to described chemokine pathways. Keloids are focal fibrotic responses to cutaneous trauma characterized by disordered collagen, which may be associated with elevated systemic fibrocyte levels and/or wound bed chemokine expression. METHODS: Blood specimens from patients with longstanding keloids and those who form grossly normal scars were assayed by fluorescence activated cell sorting analysis for fibrocytes (CD45+, Col I+). The expression of the fibrocyte chemotactic cell surface marker CXCR4, intracellular markers of fibroblast differentiation (pSMAD2/3), and plasma levels of the CXCR4 cognate CXCL12 were compared. Keloid specimens and grossly normal scars were excised, and local expression of CXCL12 was assayed. RESULTS: Keloid-forming patients demonstrated a significantly greater number of circulating fibrocytes (17.4 × 105 cells/mL) than control patients (1.01 × 105 cells/mL, P = 0.004). The absolute number of fibrocytes expressing CXCR4 was significantly greater (P = 0.012) in keloid-forming patients. Systemic CXCL12 levels were insignificantly greater in keloid-forming patients than controls. Keloid specimens had significantly greater CXCL12 expression (529.3 pg/mL) than normal scar (undetectable). CONCLUSIONS: Systemic fibrocyte levels and the CXCR4/CXCL12 biologic axis responsible for fibrocyte trafficking to areas of regional fibrosis were both upregulated in patients who form keloids compared with controls. Keloids persistently expressed CXLC12, which serves both as the main chemoattractant for fibrocytes and a downstream mediator for local inflammation, suggesting a role for this biologic axis in keloid formation and possibly recurrence.


Asunto(s)
Quimiocina CXCL12 , Fibroblastos , Queloide , Diferenciación Celular , Factores Quimiotácticos , Cicatriz , Fibroblastos/patología , Fibrosis , Humanos , Queloide/patología
4.
Mol Med ; 26(1): 52, 2020 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-32460694

RESUMEN

BACKGROUND: Fibrosis is an integral component of the pathogenesis of acute lung injury and is associated with poor outcomes in patients with acute respiratory distress syndrome (ARDS). Fibrocytes are bone marrow-derived cells that traffic to injured tissues and contribute to fibrosis; hence their concentration in the peripheral blood has the potential to serve as a biomarker of lung fibrogenesis. We therefore sought to test the hypothesis that the concentration and phenotype of circulating fibrocytes in patients with ARDS predicts clinical outcomes. METHODS: For the animal studies, C57Bl/6 mice were infected with experimental Klebsiella pneumoniae in a model of acute lung injury; one-way ANOVA was used to compare multiple groups and two-way ANOVA was used to compare two groups over time. For the human study, 42 subjects with ARDS and 12 subjects with pneumonia (without ARDS) were compared to healthy controls. Chi-squared or Fisher's exact test were used to compare binary outcomes. Survival data was expressed using a Kaplan-Meier curve and compared by log-rank test. Univariable and multivariable logistic regression were used to predict death. RESULTS: In mice with acute lung injury caused by Klebsiella pneumonia, there was a time-dependent increase in lung soluble collagen that correlated with sequential expansion of fibrocytes in the bone marrow, blood, and then lung compartments. Correspondingly, when compared via cross-sectional analysis, the initial concentration of blood fibrocytes was elevated in human subjects with ARDS or pneumonia as compared to healthy controls. In addition, fibrocytes from subjects with ARDS displayed an activated phenotype and on serial measurements, exhibited intermittent episodes of markedly elevated concentration over a median of 1 week. A peak concentration of circulating fibrocytes above a threshold of > 4.8 × 106 cells/mL cells correlated with mortality that was independent of age, ratio of arterial oxygen concentration to the fraction of inspired oxygen, and vasopressor requirement. CONCLUSIONS: Circulating fibrocytes increase in a murine model of acute lung injury and elevation in the number of these cells above a certain threshold is correlated with mortality in human ARDS. Therefore, these cells may provide a useful and easily measured biomarker to predict outcomes in these patients.


Asunto(s)
Lesión Pulmonar Aguda/patología , Células de la Médula Ósea/patología , Pulmón/patología , Síndrome de Dificultad Respiratoria/mortalidad , Síndrome de Dificultad Respiratoria/patología , Lesión Pulmonar Aguda/etiología , Adulto , Animales , Biomarcadores , Movimiento Celular , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Proyectos Piloto , Pronóstico , Síndrome de Dificultad Respiratoria/etiología
5.
Am J Respir Cell Mol Biol ; 60(4): 413-419, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30352167

RESUMEN

Asthma is associated with the overproduction of leukotrienes (LTs), including LTB4. Patients with severe asthma can be highly responsive to 5-lipoxygenase (5-LO) inhibition, which blocks production of both the cysteinyl LTs and LTB4. Production of LTB4 has traditionally been ascribed to neutrophils, mononuclear phagocytes, and epithelial cells, and acts as a chemoattractant for inflammatory cells associated with asthma. The source of LTB4 is unclear, especially in eosinophilic asthma. We speculated that the benefit of 5-LO inhibition could be mediated in part by inhibition of eosinophil-derived LTB4. LTB4 concentrations were assayed in BAL fluid from patients with severe asthma characterized by isolated neutrophilic, eosinophilic, and paucigranulocytic inflammation. Expression of LTA4 hydrolase (LTA4H) by airway eosinophils was determined by immunohistochemistry (IHC). Subsequently, peripheral blood eosinophils were activated and secreted LTB4 was quantified by enzyme immunoassay. Blood eosinophil LTA4H expression was determined by flow cytometry, qPCR, and IHC. LTB4 concentrations were elevated in BAL fluid from patients with severe asthma, including those with isolated eosinophilic inflammation, and these eosinophils displayed LTA4H via IHC. LTA4H expression by blood eosinophils was confirmed by flow cytometry, IHC, and qPCR. Robust LTB4 production by blood eosinophils was observed in response to some, but not all, stimuli. We demonstrated that eosinophils express LTA4H transcripts and protein, and can be stimulated to secrete LTB4. We speculate that in many patients with asthma, eosinophil-derived LTB4 is increased, and this may contribute to the efficacy of 5-LO inhibition.


Asunto(s)
Asma/patología , Eosinófilos/metabolismo , Epóxido Hidrolasas/metabolismo , Leucotrieno B4/biosíntesis , Araquidonato 5-Lipooxigenasa/metabolismo , Asma/inmunología , Líquido del Lavado Bronquioalveolar/citología , Niño , Preescolar , Femenino , Humanos , Inhibidores de la Lipooxigenasa/farmacología , Masculino , Neutrófilos/citología
6.
J Immunol ; 196(12): 5047-55, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27183631

RESUMEN

Gram-negative bacterial pneumonia is a common and dangerous infection with diminishing treatment options due to increasing antibiotic resistance among causal pathogens. The mononuclear phagocyte system is a heterogeneous group of leukocytes composed of tissue-resident macrophages, dendritic cells, and monocyte-derived cells that are critical in defense against pneumonia, but mechanisms that regulate their maintenance and function during infection are poorly defined. M-CSF has myriad effects on mononuclear phagocytes but its role in pneumonia is unknown. We therefore tested the hypothesis that M-CSF is required for mononuclear phagocyte-mediated host defenses during bacterial pneumonia in a murine model of infection. Genetic deletion or immunoneutralization of M-CSF resulted in reduced survival, increased bacterial burden, and greater lung injury. M-CSF was necessary for the expansion of lung mononuclear phagocytes during infection but did not affect the number of bone marrow or blood monocytes, proliferation of precursors, or recruitment of leukocytes to the lungs. In contrast, M-CSF was essential to survival and antimicrobial functions of both lung and liver mononuclear phagocytes during pneumonia, and its absence resulted in bacterial dissemination to the liver and hepatic necrosis. We conclude that M-CSF is critical to host defenses against bacterial pneumonia by mediating survival and antimicrobial functions of mononuclear phagocytes in the lungs and liver.


Asunto(s)
Infecciones por Klebsiella/inmunología , Hígado/inmunología , Pulmón/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Sistema Mononuclear Fagocítico/inmunología , Fagocitos/inmunología , Neumonía Bacteriana/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/inmunología , Médula Ósea/inmunología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/inmunología , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/inmunología , Hígado/citología , Hígado/microbiología , Hígado/patología , Pulmón/citología , Pulmón/microbiología , Pulmón/patología , Factor Estimulante de Colonias de Macrófagos/deficiencia , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Monocitos/inmunología , Monocitos/microbiología , Neumonía Bacteriana/microbiología
7.
J Allergy Clin Immunol ; 137(3): 750-7.e3, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26371837

RESUMEN

BACKGROUND: A biomarker that predicts poor asthma control would be clinically useful. Fibrocytes are bone marrow-derived circulating progenitor cells that have been implicated in tissue fibrosis and T(H)2 responses in asthmatic patients. OBJECTIVE: We sought to test the hypothesis that the concentration and activation state of peripheral blood fibrocytes correlates with asthma severity. METHODS: By using fluorescence-activated cell sorting analysis, fibrocytes (CD45(+) and collagen 1 [Col1](+)) were enumerated and characterized in the buffy coats of fresh peripheral blood samples from 15 control subjects and 40 asthmatic patients. RESULTS: Concentrations of peripheral blood total (CD45(+)Col1(+)), activated (the TGF-ß transducing protein phosphorylated SMAD2/3 [p-SMAD2/3](+) or phosphorylated AKT [p-AKT](+)), and differentiated (α-smooth muscle actin [α-SMA](+)) fibrocytes were increased in asthmatic patients compared with control subjects. The increase in total and CD45(+)Col1(+)CXCR4(+) fibrocytes was primarily seen in patients with severe asthma (Global Initiative for Asthma steps 4-5) as opposed to those with milder asthma (Global Initiative for Asthma steps 1-3). In addition, numbers of circulating α-SMA(+) and α-SMA(+)CXCR4(+) fibrocytes were increased in asthmatic patients experiencing an asthma exacerbation in the preceding 12 months. A significant correlation (P < .05) was observed between CD45(+)Col1(+)CXCR4(+) fibrocytes and the activation phenotypes CD45(+)Col1(+)p-SMAD2/3(+) and CD45(+)Col1(+)p-AKT(+). CONCLUSION: There was correlation between circulating fibrocyte subsets and asthma severity, and there was an increased number of activated/differentiated fibrocytes in circulating blood of asthmatic patients experiencing an exacerbation in the preceding 12 months.


Asunto(s)
Asma/sangre , Asma/diagnóstico , Recuento de Células , Diferenciación Celular , Células del Tejido Conectivo/citología , Células del Tejido Conectivo/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Superficie/metabolismo , Biomarcadores , Estudios de Casos y Controles , Niño , Progresión de la Enfermedad , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad , Pruebas de Función Respiratoria , Índice de Severidad de la Enfermedad , Adulto Joven
8.
Infect Immun ; 84(1): 320-8, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26553462

RESUMEN

Chemokines are best recognized for their role within the innate immune system as chemotactic cytokines, signaling and recruiting host immune cells to sites of infection. Certain chemokines, such as CXCL10, have been found to play an additional role in innate immunity, mediating CXCR3-independent killing of a diverse array of pathogenic microorganisms. While this is still not clearly understood, elucidating the mechanisms underlying chemokine-mediated antimicrobial activity may facilitate the development of novel therapeutic strategies effective against antibiotic-resistant Gram-negative pathogens. Here, we show that CXCL10 exerts antibacterial effects on clinical and laboratory strains of Escherichia coli and report that disruption of pyruvate dehydrogenase complex (PDHc), which converts pyruvate to acetyl coenzyme A, enables E. coli to resist these antimicrobial effects. Through generation and screening of a transposon mutant library, we identified two mutants with increased resistance to CXCL10, both with unique disruptions of the gene encoding the E1 subunit of PDHc, aceE. Resistance to CXCL10 also occurred following deletion of either aceF or lpdA, genes that encode the remaining two subunits of PDHc. Although PDHc resides within the bacterial cytosol, electron microscopy revealed localization of immunogold-labeled CXCL10 to the bacterial cell surface in both the E. coli parent and aceE deletion mutant strains. Taken together, our findings suggest that while CXCL10 interacts with an as-yet-unidentified component on the cell surface, PDHc is an important mediator of killing by CXCL10. To our knowledge, this is the first description of PDHc as a key bacterial component involved in the antibacterial effect of a chemokine.


Asunto(s)
Antibacterianos/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Quimiocina CXCL10/metabolismo , Inmunidad Innata/inmunología , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Sitios de Unión , Dihidrolipoamida Deshidrogenasa/genética , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/genética , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli , Técnicas de Inactivación de Genes , Humanos , Unión Proteica , Piruvato Deshidrogenasa (Lipoamida)/genética
9.
J Immunol ; 192(11): 5059-68, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24771855

RESUMEN

The leukotriene A4 hydrolase (LTA4H) is a bifunctional enzyme with epoxy hydrolase and aminopeptidase activities. We hypothesize that the LTA4H aminopeptidase activity alleviates neutrophilic inflammation, which contributes to cigarette smoke (CS)-induced emphysema by clearing proline-glycine-proline (PGP), a triamino acid chemokine known to induce chemotaxis of neutrophils. To investigate the biological contributions made by the LTA4H aminopeptidase activity in CS-induced emphysema, we exposed wild-type mice to CS over 5 mo while treating them with a vehicle or a pharmaceutical agent (4MDM) that selectively augments the LTA4H aminopeptidase without affecting the bioproduction of leukotriene B4. Emphysematous phenotypes were assessed by premortem lung physiology with a small animal ventilator and by postmortem histologic morphometry. CS exposure acidified the airspaces and induced localization of the LTA4H protein into the nuclei of the epithelial cells. This resulted in accumulation of PGP in the airspaces by suppressing the LTA4H aminopeptidase activity. When the LTA4H aminopeptidase activity was selectively augmented by 4MDM, the levels of PGP in the bronchoalveolar lavage fluid and infiltration of neutrophils into the lungs were significantly reduced without affecting the levels of leukotriene B4. This protected murine lungs from CS-induced emphysematous alveolar remodeling. In conclusion, CS exposure promotes the development of CS-induced emphysema by suppressing the enzymatic activities of the LTA4H aminopeptidase in lung tissues and accumulating PGP and neutrophils in the airspaces. However, restoring the leukotriene A4 aminopeptidase activity with a pharmaceutical agent protected murine lungs from developing CS-induced emphysema.


Asunto(s)
Epóxido Hidrolasas/inmunología , Leucotrieno A4/inmunología , Pulmón/inmunología , Neutrófilos/inmunología , Enfisema Pulmonar/inmunología , Fumar/efectos adversos , Animales , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/genética , Leucotrieno A4/genética , Leucotrieno B4/genética , Leucotrieno B4/inmunología , Pulmón/patología , Ratones , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/patología , Enfisema Pulmonar/etiología , Enfisema Pulmonar/genética , Enfisema Pulmonar/patología , Fumar/genética , Fumar/inmunología
10.
Am J Respir Crit Care Med ; 190(12): 1395-401, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25347450

RESUMEN

RATIONALE: The rate of progression of most interstitial lung diseases (ILD) is unpredictable. Fibrocytes are circulating bone marrow-derived cells that have been implicated in the pathogenesis of lung fibrosis. Hermansky-Pudlak syndrome (HPS), a genetic cause of ILD in early adulthood, allows for study of biomarkers of ILD in a homogeneous population at near-certain risk of developing fibrotic lung disease. OBJECTIVES: To test the hypothesis that, in subjects with HPS, the number or phenotype of circulating fibrocytes predicts progression and outcome of ILD. METHODS: We measured circulating fibrocyte counts and chemokine levels in a cohort of subjects with HPS and healthy control subjects and correlated the results to disease outcome. MEASUREMENTS AND MAIN RESULTS: In a cross-sectional analysis, peripheral blood fibrocyte concentrations were markedly elevated in a subset of subjects with HPS who had ILD but not subjects without lung disease or normal control subjects. The blood concentration of fibrocytes expressing the chemokine receptor CXCR4 correlated significantly with the plasma concentration of the CXCR4 ligand, CXCL12. In a longitudinal study, we found marked episodic elevations in circulating fibrocyte counts over a median follow-up period of 614 days. Elevations in both maximal values and final values of peripheral blood CXCR4(+) fibrocyte concentration were strongly associated with death from ILD. CONCLUSIONS: CXCR4(+) fibrocyte concentration may be useful as a biomarker for outcome of ILD in subjects with HPS.


Asunto(s)
Síndrome de Hermanski-Pudlak/diagnóstico , Células Madre Mesenquimatosas/fisiología , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Estudios Transversales , Femenino , Síndrome de Hermanski-Pudlak/sangre , Síndrome de Hermanski-Pudlak/mortalidad , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pronóstico , Receptores CXCR4/sangre , Receptores CXCR4/fisiología , Análisis de Supervivencia
11.
Eur J Med Chem ; 272: 116459, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704942

RESUMEN

Activation of the aminopeptidase (AP) activity of leukotriene A4 hydrolase (LTA4H) presents a potential therapeutic strategy for resolving chronic inflammation. Previously, ARM1 and derivatives were found to activate the AP activity using the alanine-p-nitroanilide (Ala-pNA) as a reporter group in an enzyme kinetics assay. As an extension of this previous work, novel ARM1 derivatives were synthesized using a palladium-catalyzed Ullmann coupling reaction and screened using the same assay. Analogue 5, an aminopyrazole (AMP) analogue of ARM1, was found to be a potent AP activator with an AC50 of 0.12 µM. An X-ray crystal structure of LTA4H in complex with AMP was refined at 2.7 Å. Despite its AP activity with Ala-pNA substrate, AMP did not affect hydrolysis of the previously proposed natural ligand of LTA4H, Pro-Gly-Pro (PGP). This result highlights a discrepancy between the hydrolysis of more conveniently monitored chromogenic synthetic peptides typically employed in assays and endogenous peptides. The epoxide hydrolase (EH) activity of AMP was measured in vivo and the compound significantly reduced leukotriene B4 (LTB4) levels in a murine bacterial pneumonia model. However, AMP did not enhance survival in the murine pneumonia model over a 14-day period. A liver microsome stability assay showed metabolic stability of AMP. The results suggested that accelerated Ala-pNA cleavage is not sufficient for predicting therapeutic potential, even when the full mechanism of activation is known.


Asunto(s)
Epóxido Hidrolasas , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/metabolismo , Animales , Ratones , Relación Estructura-Actividad , Humanos , Estructura Molecular , Aminopeptidasas/metabolismo , Aminopeptidasas/antagonistas & inhibidores , Éteres/farmacología , Éteres/química , Éteres/síntesis química , Relación Dosis-Respuesta a Droga , Modelos Moleculares , Cristalografía por Rayos X
12.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659897

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a morbid fibrotic lung disease with limited treatment options. The pathophysiology of IPF remains poorly understood, and elucidation of the cellular and molecular mechanisms of IPF pathogenesis is key to the development of new therapeutics. B-1 cells are an innate B cell population which play an important role linking innate and adaptive immunity. B-1 cells spontaneously secrete natural IgM and prevent inflammation in several disease states. One class of these IgM recognize oxidation-specific epitopes (OSE), which have been shown to be generated in lung injury and to promote fibrosis. A main B-1 cell reservoir is the pleural space, adjacent to the typical distribution of fibrosis in IPF. In this study, we demonstrate that B-1 cells are recruited to the lung during injury where they secrete IgM to OSE (IgM OSE ). We also show that the pleural B-1 cell reservoir responds to lung injury through regulation of the chemokine receptor CXCR4. Mechanistically we show that the transcription factor Id3 is a novel negative regulator of CXCR4 expression. Using mice with B-cell specific Id3 deficiency, a model of increased B-1b cells, we demonstrate decreased bleomycin-induced fibrosis compared to littermate controls. Furthermore, we show that mice deficient in secretory IgM ( sIgM -/- ) have higher mortality in response to bleomycin-induced lung injury, which is partially mitigated through airway delivery of the IgM OSE E06. Additionally, we provide insight into potential mechanisms of IgM in attenuation of fibrosis through RNA sequencing and pathway analysis, highlighting complement activation and extracellular matrix deposition as key differentially regulated pathways.

13.
Am J Physiol Lung Cell Mol Physiol ; 305(10): L702-11, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24056971

RESUMEN

Bacterial pneumonia is a common and dangerous illness. Mononuclear phagocytes, which comprise monocyte, resident and recruited macrophage, and dendritic cell subsets, are critical to antimicrobial defenses, but the dynamics of their recruitment to the lungs in pneumonia is not established. We hypothesized that chemokine-mediated traffic of mononuclear phagocytes is important in defense against bacterial pneumonia. In a mouse model of Klebsiella pneumonia, circulating Ly6C(hi) and, to a lesser extent, Ly6C(lo) monocytes expanded in parallel with accumulation of inflammatory macrophages and CD11b(hi) dendritic cells and plasmacytoid dendritic cells in the lungs, whereas numbers of alveolar macrophages remained constant. CCR2 was expressed by Ly6C(hi) monocytes, recruited macrophages, and airway dendritic cells; CCR6 was prominently expressed by airway dendritic cells; and CX3CR1 was ubiquitously expressed by blood monocytes and lung CD11b(hi) dendritic cells during infection. CCR2-deficient, but not CCL2-, CX3CR1-, or CCR6-deficient animals exhibited worse outcomes of infection. The absence of CCR2 had no detectable effect on neutrophils but resulted in reduction of all subsets of lung mononuclear phagocytes in the lungs, including alveolar macrophages and airway and plasmacytoid dendritic cells. In addition, absence of CCR2 skewed the phenotype of lung mononuclear phagocytes, abrogating the appearance of M1 macrophages and TNF-producing dendritic cells in the lungs. Taken together, these data define the dynamics of mononuclear phagocytes during pneumonia.


Asunto(s)
Quimiocina CCL2/fisiología , Monocitos/inmunología , Fagocitos/inmunología , Neumonía/inmunología , Receptores CCR2/fisiología , Receptores CCR6/fisiología , Receptores de Quimiocina/fisiología , Animales , Receptor 1 de Quimiocinas CX3C , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Bacterias Gramnegativas/inmunología , Bacterias Gramnegativas/patogenicidad , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Masculino , Ratones , Monocitos/metabolismo , Monocitos/patología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Peroxidasa/metabolismo , Fagocitos/metabolismo , Fagocitos/patología , Neumonía/metabolismo , Neumonía/patología
14.
Blood ; 117(2): 480-8, 2011 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20980681

RESUMEN

We investigated possible cellular receptors for the human CXC chemokine platelet factor-4 variant/CXCL4L1, a potent inhibitor of angiogenesis. We found that CXCL4L1 has lower affinity for heparin and chondroitin sulfate-E than platelet factor-4 (CXCL4) and showed that CXCL10 and CXCL4L1 could displace each other on microvascular endothelial cells. Labeled CXCL4L1 also bound to CXCR3A- and CXCR3B-transfectants and was displaced by CXCL4L1, CXCL4, and CXCL10. The CXCL4L1 anti-angiogenic activity was blocked by anti-CXCR3 antibodies (Abs) in the Matrigel and cornea micropocket assays. CXCL4L1 application in CXCR3(-/-) or in wild-type mice treated with neutralizing anti-CXCR3 Abs, resulted in reduced inhibitory activity of CXCL4L1 on tumor growth and vascularization of Lewis lung carcinoma. Furthermore, CXCL4L1 and CXCL4 chemoattracted activated T cells, human natural killer cells, and human immature dendritic cells (DCs). Migration of DCs toward CXCL4 and CXCL4L1 was desensitized by preincubation with CXCL10 and CXCL11, inhibited by pertussis toxin, and neutralized by anti-CXCR3 Abs. Chemotaxis of T cells, natural killer cells, and DCs is likely to contribute to the antitumoral action. However, the in vivo data indicate that the angiostatic property of CXCL4L1 is equally important in retarding tumor growth. Thus, both CXCR3A and CXCR3B are implicated in the chemotactic and vascular effects of CXCL4L1.


Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Factores Quimiotácticos/metabolismo , Factor Plaquetario 4/metabolismo , Receptores CXCR3/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Factores Quimiotácticos/farmacología , Quimiotaxis de Leucocito/efectos de los fármacos , Quimiotaxis de Leucocito/fisiología , Células Dendríticas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Factor Plaquetario 4/farmacología , Ratas , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Am J Respir Crit Care Med ; 186(10): 1044-50, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22997203

RESUMEN

RATIONALE: Activation of the adenosine A(2B) receptor (A(2B)R) promotes antiinflammatory effects in diverse biological settings, but the role of this receptor in antimicrobial host defense in the lung has not been established. Gram-negative bacillary pneumonia is a common and serious illness associated with high morbidity and mortality, the treatment of which is complicated by increasing rates of antibiotic resistance. OBJECTIVES: To test the hypothesis that absence of adenosine A(2B) receptor signaling promotes host defense against bacterial pneumonia. METHODS: We used a model of Klebsiella pneumoniae pneumonia in wild-type mice and mice with targeted deletion of the A(2B)R. Host responses were compared in vivo and leukocyte responses to the bacteria were examined in vitro. MEASUREMENTS AND MAIN RESULTS: A(2B)R(-/-) mice demonstrated enhanced bacterial clearance from the lung and improved survival after infection with K. pneumoniae compared with wild-type controls, an effect that was mediated by bone marrow-derived cells. Leukocyte recruitment to the lungs and expression of inflammatory cytokines did not differ between A(2B)R(-/-) and wild-type mice, but A(2B)R(-/-) neutrophils exhibited sixfold greater bactericidal activity and enhanced production of neutrophil extracellular traps compared with wild-type neutrophils when incubated with K. pneumoniae. Consistent with this finding, bronchoalveolar lavage fluid from A(2B)R(-/-) mice with Klebsiella pneumonia contained more extracellular DNA compared with wild-type mice with pneumonia. CONCLUSIONS: These data suggest that the absence of A(2B)R signaling enhances antimicrobial activity in gram-negative bacterial pneumonia.


Asunto(s)
Infecciones por Klebsiella/inmunología , Klebsiella pneumoniae , Neutrófilos/inmunología , Neumonía Bacteriana/inmunología , Receptor de Adenosina A2B/deficiencia , Animales , Células de la Médula Ósea/metabolismo , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Neumonía Bacteriana/metabolismo , Receptor de Adenosina A2B/inmunología , Transducción de Señal
16.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36853800

RESUMEN

BACKGROUNDFibrocytes are BM-derived circulating cells that traffic to the injured lungs and contribute to fibrogenesis. The mTOR inhibitor, sirolimus, inhibits fibrocyte CXCR4 expression, reducing fibrocyte traffic and attenuating lung fibrosis in animal models. We sought to test the hypothesis that short-term treatment with sirolimus reduces the concentration of CXCR4+ circulating fibrocytes in patients with idiopathic pulmonary fibrosis (IPF).METHODSWe conducted a short-term randomized double-blind placebo-controlled crossover pilot trial to assess the safety and tolerability of sirolimus in IPF. Participants were randomly assigned to sirolimus or placebo for approximately 6 weeks, and after a 4-week washout, they were assigned to the alternate treatment. Toxicity, lung function, and the concentration of circulating fibrocytes were measured before and after each treatment.RESULTSIn the 28 study participants, sirolimus resulted in a statistically significant 35% decline in the concentration of total fibrocytes, 34% decline in CXCR4+ fibrocytes, and 42% decline in fibrocytes expressing α-smooth muscle actin, but no significant change in these populations occurred on placebo. Respiratory adverse events occurred more frequently during treatment with placebo than sirolimus; the incidence of adverse events and drug tolerability did not otherwise differ during therapy with drug and placebo. Lung function was unaffected by either treatment, with the exception of a small decline in gas transfer during treatment with placebo.CONCLUSIONAs compared with placebo, short-term treatment with sirolimus resulted in reduction of circulating fibrocyte concentrations in participants with IPF, with an acceptable safety profile.TRIAL REGISTRATIONClinicalTrials.gov, accession no. NCT01462006.FUNDINGNIH R01HL098329 and American Heart Association 18TPA34170486.


Asunto(s)
Fibrosis Pulmonar Idiopática , Sirolimus , Estados Unidos , Animales , Sirolimus/efectos adversos , Estudios Cruzados , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Fibroblastos/metabolismo
17.
Infect Immun ; 80(5): 1759-65, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22392929

RESUMEN

Invasive aspergillosis is a life-threatening complication of neutrophil deficiency or dysfunction. Neutropenia has previously been associated with enhanced influx of CD11b-expressing conventional dendritic cells to the lungs in response to Aspergillus species, but whether neutrophils directly modulate the function of dendritic cells in this infection is not known. We hypothesized that, in the setting of intrapulmonary challenge with Aspergillus, neutrophils promote the maturation and traffic of lung conventional dendritic cells to draining mediastinal lymph nodes. We report that neutropenia results in a marked accumulation of dendritic cells in the lungs of mice challenged with Aspergillus but greatly diminishes their egress to mediastinal lymph nodes independent of neutrophil microbicidal functions. Furthermore, the phenotype of lung dendritic cells was more immature in neutropenic animals than in nonneutropenic mice exposed to the microorganism. Consistent with this, coincubation with neutrophils greatly enhanced the upregulation of costimulatory molecules on dendritic cells exposed to Aspergillus in vitro, a process that was dependent on cell contact and the dendritic cell receptor DC-SIGN. Taken together, our data support an immunomodulatory cross talk between neutrophils and dendritic cells in the context of host response to Aspergillus that promotes the maturation and efflux of lung dendritic cells.


Asunto(s)
Aspergillus fumigatus/fisiología , Células Dendríticas/fisiología , Pulmón/citología , Neutrófilos/fisiología , Animales , Femenino , Interacciones Huésped-Patógeno , Ganglios Linfáticos/citología , Subgrupos Linfocitarios , Masculino , Ratones , Ratones Endogámicos C57BL , Neutropenia , Organismos Libres de Patógenos Específicos
18.
Stroke ; 43(12): 3382-6, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23042661

RESUMEN

BACKGROUND AND PURPOSE: The chemokine ligand CXCL12 is constitutively expressed in the bone marrow and other tissues including the brain endothelium and is responsible for regulating the trafficking of bone marrow progenitor cells. CXCL12 has been shown to play a significant role in animal models of ischemic stroke but its role in human stroke is unclear. The aim of this study was to test the hypothesis that elevated circulating baseline CXCL12 levels are associated with subsequent stroke. METHODS: We prospectively collected demographic and angiographic data from consecutive patients referred for elective coronary angiography. Before coronary angiography a peripheral blood sample was collected for subsequent measurement of CXCL12. One-year stroke risk was calculated using the Framingham Risk Profile. Clinical follow-up was performed at 6 months and 1 year. RESULTS: Of 206 subjects enrolled, 10 (4.9%) sustained an ischemic stroke over the 1 year follow-up. There were no significant differences in baseline clinical characteristics or angiographic findings. However, median CXCL12 levels were significantly higher in those who sustained an ischemic stroke compared with those who did not (10 856 pg/mL versus 2241 pg/mL, P=0.007). The time to stroke distribution between subjects with baseline CXCL12 levels≥10 421 pg/mL and those with baseline CXCL12 levels<10 421 pg/mL was significantly different (log rank P<0.001). The weighted Cox proportional hazard model demonstrated that baseline CXCL12 levels≥10 421 pg/mL were significantly associated with ischemic stroke at follow-up (hazard ratio, 15.29; 95% CI, 3.05-76.71). CONCLUSIONS: Plasma CXCL12 levels may represent a novel biomarker of future ischemic stroke.


Asunto(s)
Quimiocina CXCL12/sangre , Quimiocina CXCL12/inmunología , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/inmunología , Anciano , Biomarcadores/sangre , Angiografía Coronaria/estadística & datos numéricos , Bases de Datos Factuales/estadística & datos numéricos , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Accidente Cerebrovascular/sangre
19.
Lab Invest ; 92(10): 1461-71, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22906987

RESUMEN

The specific mechanisms that mediate CD4(+) T-cell-mediated liver injury have not been fully elucidated. CD4(+) invariant natural killer T (iNKT) cells are required for liver damage in some mouse models of hepatitis, while the chemokine receptors CXCR3 and CCR5 are considered dominant Th1 chemokine receptors involved in Th1 trafficking in inflammatory conditions. BALB/c-Tgfb1(-/-) mice spontaneously develop Th1 hepatitis. Here, we directly test the hypotheses that iNKT cells or the Th1-cell chemokine receptors CXCR3 and CCR5 are required for development of liver disease in Tgfb1(-/-) mice. Tgfb1(-/-) mouse livers exhibited significant increases in iNKT cells and in ligands for CXCR3 or CCR5. Tgfb1(-/-) mice were rendered deficient in iNKT cells, CXCR3, CCR5, or both CXCR3 and CCR5, by cross-breeding with appropriate knockout mice. Tgfb1(-/-) mice developed severe liver injury, even in the absence of functional CD1d/iNKT cells, CXCR3, CCR5, or both CXCR3 and CCR5. Liver CD4(+) T cells accumulated to high numbers, and spleen CD4(+) T-cell numbers declined, regardless of the functionality of the CXCR3/CCR5 response pathways. Similarly, dendritic cells and macrophages accumulated in Tgfb1(-/-) livers even when CXCR3 and CCR5 were knocked out. Th1-associated cytokines (IFN-γ, TNF-α, IL-2) and chemokines (CXCL9, CXCL10) were strongly overexpressed in Tgfb1(-/-) mice despite knockouts in CD1d, CXCR3, or CCR5. These studies indicate that the cellular and biochemical basis for CD4(+) T-cell-mediated injury in liver can be complex, with myriad pathways potentially involved.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Hepatitis/inmunología , Hígado/patología , Células T Asesinas Naturales/metabolismo , Receptores de Quimiocina/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Quimiocina CXCL9/inmunología , Quimiocina CXCL9/metabolismo , Quimiocinas/inmunología , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Citometría de Flujo , Hepatitis/metabolismo , Hepatitis/patología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-2/inmunología , Interleucina-2/metabolismo , Hígado/inmunología , Hígado/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células T Asesinas Naturales/inmunología , Receptores CCR5/genética , Receptores CCR5/inmunología , Receptores CCR5/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/inmunología , Receptores CXCR3/metabolismo , Receptores de Quimiocina/inmunología , Estadísticas no Paramétricas , Células TH1/inmunología , Células TH1/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
20.
PLoS Pathog ; 6(11): e1001199, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21124994

RESUMEN

Chemokines have been found to exert direct, defensin-like antimicrobial activity in vitro, suggesting that, in addition to orchestrating cellular accumulation and activation, chemokines may contribute directly to the innate host response against infection. No observations have been made, however, demonstrating direct chemokine-mediated promotion of host defense in vivo. Here, we show that the murine interferon-inducible CXC chemokines CXCL9, CXCL10, and CXCL11 each exert direct antimicrobial effects in vitro against Bacillus anthracis Sterne strain spores and bacilli including disruptions in spore germination and marked reductions in spore and bacilli viability as assessed using CFU determination and a fluorometric assay of metabolic activity. Similar chemokine-mediated antimicrobial activity was also observed against fully virulent Ames strain spores and encapsulated bacilli. Moreover, antibody-mediated neutralization of these CXC chemokines in vivo was found to significantly increase host susceptibility to pulmonary B. anthracis infection in a murine model of inhalational anthrax with disease progression characterized by systemic bacterial dissemination, toxemia, and host death. Neutralization of the shared chemokine receptor CXCR3, responsible for mediating cellular recruitment in response to CXCL9, CXCL10, and CXCL11, was not found to increase host susceptibility to inhalational anthrax. Taken together, our data demonstrate a novel, receptor-independent antimicrobial role for the interferon-inducible CXC chemokines in pulmonary innate immunity in vivo. These data also support an immunomodulatory approach for effectively treating and/or preventing pulmonary B. anthracis infection, as well as infections caused by pathogenic and potentially, multi-drug resistant bacteria including other spore-forming organisms.


Asunto(s)
Carbunco/inmunología , Bacillus anthracis/efectos de los fármacos , Quimiocina CXCL10/inmunología , Quimiocina CXCL11/inmunología , Quimiocina CXCL9/inmunología , Modelos Animales de Enfermedad , Interferones/farmacología , Administración por Inhalación , Animales , Carbunco/microbiología , Antivirales/farmacología , Bacillus anthracis/patogenicidad , Femenino , Luminiscencia , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esporas Bacterianas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA