Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Glia ; 71(3): 775-794, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36433736

RESUMEN

Colony stimulating factor (CSF) receptor-1 (CSF-1R)-related leukoencephalopathy (CRL) is an adult-onset, demyelinating and neurodegenerative disease caused by autosomal dominant mutations in CSF1R, modeled by the Csf1r+/- mouse. The expression of Csf2, encoding granulocyte-macrophage CSF (GM-CSF) and of Csf3, encoding granulocyte CSF (G-CSF), are elevated in both mouse and human CRL brains. While monoallelic targeting of Csf2 has been shown to attenuate many behavioral and histological deficits of Csf1r+/- mice, including cognitive dysfunction and demyelination, the contribution of Csf3 has not been explored. In the present study, we investigate the behavioral, electrophysiological and histopathological phenotypes of Csf1r+/- mice following monoallelic targeting of Csf3. We show that Csf3 heterozygosity normalized the Csf3 levels in Csf1r+/- mouse brains and ameliorated anxiety-like behavior, motor coordination and social interaction deficits, but not the cognitive impairment of Csf1r+/- mice. Csf3 heterozygosity failed to prevent callosal demyelination. However, consistent with its effects on behavior, Csf3 heterozygosity normalized microglial morphology in the cerebellum and in the ventral, but not in the dorsal hippocampus. Csf1r+/- mice exhibited altered firing activity in the deep cerebellar nuclei (DCN) associated with increased engulfment of glutamatergic synapses by DCN microglia and increased deposition of the complement factor C1q on glutamatergic synapses. These phenotypes were significantly ameliorated by monoallelic deletion of Csf3. Our current and earlier findings indicate that G-CSF and GM-CSF play largely non-overlapping roles in CRL-like disease development in Csf1r+/- mice.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades Neurodegenerativas , Humanos , Adulto , Ratones , Animales , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Ansiedad/genética , Factor Estimulante de Colonias de Granulocitos/metabolismo , Cerebelo/metabolismo
2.
Eur J Neurosci ; 54(8): 6795-6814, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33540466

RESUMEN

PKMζ is an autonomously active PKC isoform crucial for the maintenance of synaptic long-term potentiation (LTP) and long-term memory. Unlike other kinases that are transiently stimulated by second messengers, PKMζ is persistently activated through sustained increases in protein expression of the kinase. Therefore, visualizing increases in PKMζ expression during long-term memory storage might reveal the sites of its persistent action and thus the location of memory-associated LTP maintenance in the brain. Using quantitative immunohistochemistry validated by the lack of staining in PKMζ-null mice, we examined the amount and distribution of PKMζ in subregions of the hippocampal formation of wild-type mice during LTP maintenance and spatial long-term memory storage. During LTP maintenance in hippocampal slices, PKMζ increases in the pyramidal cell body and stimulated dendritic layers of CA1 for at least 2 hr. During spatial memory storage, PKMζ increases in CA1 pyramidal cells for at least 1 month, paralleling the persistence of the memory. During the initial expression of the memory, we tagged principal cells with immediate-early gene Arc promoter-driven transcription of fluorescent proteins. The subset of memory-tagged CA1 cells selectively increases expression of PKMζ during memory storage, and the increase persists in dendritic compartments within stratum radiatum for 1 month, indicating long-term storage of information in the CA3-to-CA1 pathway. We conclude that persistent increases in PKMζ trace the molecular mechanism of LTP maintenance and thus the sites of information storage within brain circuitry during long-term memory.


Asunto(s)
Potenciación a Largo Plazo , Proteína Quinasa C , Animales , Hipocampo/metabolismo , Memoria a Largo Plazo , Ratones , Neuronas/metabolismo , Proteína Quinasa C/metabolismo , Memoria Espacial
3.
Nature ; 472(7344): 466-70, 2011 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-21460835

RESUMEN

Adult hippocampal neurogenesis is a unique form of neural circuit plasticity that results in the generation of new neurons in the dentate gyrus throughout life. Neurons that arise in adults (adult-born neurons) show heightened synaptic plasticity during their maturation and can account for up to ten per cent of the entire granule cell population. Moreover, levels of adult hippocampal neurogenesis are increased by interventions that are associated with beneficial effects on cognition and mood, such as learning, environmental enrichment, exercise and chronic treatment with antidepressants. Together, these properties of adult neurogenesis indicate that this process could be harnessed to improve hippocampal functions. However, despite a substantial number of studies demonstrating that adult-born neurons are necessary for mediating specific cognitive functions, as well as some of the behavioural effects of antidepressants, it is unknown whether an increase in adult hippocampal neurogenesis is sufficient to improve cognition and mood. Here we show that inducible genetic expansion of the population of adult-born neurons through enhancing their survival improves performance in a specific cognitive task in which two similar contexts need to be distinguished. Mice with increased adult hippocampal neurogenesis show normal object recognition, spatial learning, contextual fear conditioning and extinction learning but are more efficient in differentiating between overlapping contextual representations, which is indicative of enhanced pattern separation. Furthermore, stimulation of adult hippocampal neurogenesis, when combined with an intervention such as voluntary exercise, produces a robust increase in exploratory behaviour. However, increasing adult hippocampal neurogenesis alone does not produce a behavioural response like that induced by anxiolytic agents or antidepressants. Together, our findings suggest that strategies that are designed to increase adult hippocampal neurogenesis specifically, by targeting the cell death of adult-born neurons or by other mechanisms, may have therapeutic potential for reversing impairments in pattern separation and dentate gyrus dysfunction such as those seen during normal ageing.


Asunto(s)
Afecto/fisiología , Envejecimiento/fisiología , Cognición/fisiología , Hipocampo/citología , Hipocampo/fisiología , Modelos Neurológicos , Neurogénesis/fisiología , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Animales , Antidepresivos/farmacología , Ansiedad/fisiopatología , Ansiedad/terapia , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Giro Dentado/citología , Giro Dentado/patología , Giro Dentado/fisiología , Giro Dentado/fisiopatología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología , Miedo/fisiología , Miedo/psicología , Femenino , Hipocampo/patología , Hipocampo/fisiopatología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Proteína X Asociada a bcl-2/deficiencia , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
4.
J Neurosci ; 35(33): 11656-66, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26290242

RESUMEN

Behavioral studies have established a role for adult-born dentate granule cells in discriminating between similar memories. However, it is unclear how these cells mediate memory discrimination. Excitability is enhanced in maturing adult-born neurons, spurring the hypothesis that the activity of these cells "directly" encodes and stores memories. An alternative hypothesis posits that maturing neurons "indirectly" contribute to memory encoding by regulating excitation-inhibition balance. We evaluated these alternatives by using dentate-sensitive active place avoidance tasks to assess experience-dependent changes in dentate field potentials in the presence and absence of neurogenesis. Before training, X-ray ablation of adult neurogenesis-reduced dentate responses to perforant-path stimulation and shifted EPSP-spike coupling leftward. These differences were unchanged after place avoidance training with the shock zone in the initial location, which both groups learned to avoid equally well. In contrast, sham-treated mice decreased dentate responses and shifted EPSP-spike coupling leftward after the shock zone was relocated, whereas X-irradiated mice failed to show these changes in dentate function and were impaired on this test of memory discrimination. During place avoidance, excitation-inhibition coupled neural synchrony in dentate local field potentials was reduced in X-irradiated mice, especially in the θ band. The difference was most prominent during conflict learning, which is impaired in the X-irradiated mice. These findings indicate that maturing adult-born neurons regulate both functional network plasticity in response to memory discrimination and dentate excitation-inhibition coordination. The most parsimonious interpretation of these results is that adult neurogenesis indirectly regulates hippocampal information processing. SIGNIFICANCE STATEMENT: Adult-born neurons in the hippocampal dentate gyrus are important for flexibly using memories, but the mechanism is controversial. Using tests of hippocampus-dependent place avoidance learning and dentate electrophysiology in mice with normal or ablated neurogenesis, we find that maturing adult-born neurons are crucial only when memory must be used flexibly, and that these neurons regulate dentate gyrus synaptic and spiking responses to neocortical input rather than directly storing information, as has been proposed. A day after learning to avoid the initial or changed locations of shock, the dentate synaptic responses are enhanced or suppressed, respectively, unlike mice lacking adult neurogenesis, which did not change. The contribution of adult neurogenesis to memory is indirect, by regulating dentate excitation-inhibition coupling.


Asunto(s)
Núcleos Cerebelosos/citología , Núcleos Cerebelosos/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Neuronas/citología , Neuronas/fisiología , Animales , Reacción de Prevención/fisiología , Conducta Animal/fisiología , Masculino , Ratones , Inhibición Neural/fisiología , Neurogénesis/fisiología
5.
bioRxiv ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38948731

RESUMEN

Chronic social defeat stress (CSDS), a widely used rodent model of stress, reliably leads to decreased social interaction in stress susceptible animals. Here, we investigate a role for fear learning in this response using 129Sv/Ev mice, a strain that is more vulnerable to CSDS than the commonly used C57BL/6 strain. We first demonstrate that defeated 129Sv/Ev mice avoid a CD-1 mouse, but not a conspecific, indicating that motivation to socialize is intact in this strain. CD-1 avoidance is characterized by approach behavior that results in running in the opposite direction, activity that is consistent with a threat response. We next test whether CD-1 avoidance is subject to the same behavioral changes found in traditional models of Pavlovian fear conditioning. We find that associative learning occurs across 10 days CSDS, with defeated mice learning to associate the color of the CD-1 coat with threat. This leads to the gradual acquisition of avoidance behavior, a conditioned response that can be extinguished with 7 days of repeated social interaction testing (5 tests/day). Pairing a CD-1 with a tone leads to second-order conditioning, resulting in avoidance of an enclosure without a social target. Finally, we show that social interaction with a conspecific is a highly variable response in defeated mice that may reflect individual differences in generalization of fear to other social targets. Our data indicate that fear conditioning to a social target is a key component of CSDS, implicating the involvement of fear circuits in social avoidance.

6.
bioRxiv ; 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37461483

RESUMEN

Post-traumatic stress disorder (PTSD) is characterized by intense fear memory formation and is diagnosed more often in women than men. Here, we show that serotonin differentially affects fear learning and communication in the extended amygdala of male and female mice. Females showed higher sensitivity to the effects of pharmacologically increasing serotonin during auditory fear conditioning, which enhanced fear memory recall in both sexes. Optogenetic stimulation of dorsal raphe terminals in the anterior dorsal bed nucleus of the stria terminalis (adBNST) during fear conditioning increased c-Fos expression in the BNST and central nucleus of the amygdala (CeA), and enhanced fear memory recall via activation of adBNST 5-HT2C receptors in females only. Likewise, in females only, serotonin stimulation during learning enhanced adBNST-CeA high gamma (90-140Hz) synchrony and adBNST-to-CeA communication in high gamma during fear memory recall. We conclude that sex differences in the raphe-BNST-CeA circuit may increase risk of PTSD in women.

7.
Hippocampus ; 22(9): 1795-808, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22431384

RESUMEN

The hippocampus is involved in segregating memories, an ability that utilizes the neural process of pattern separation and allows for cognitive flexibility. We evaluated a proposed role for adult hippocampal neurogenesis in cognitive flexibility using variants of the active place avoidance task and two independent methods of ablating adult-born neurons, focal X-irradiation of the hippocampus, and genetic ablation of glial fibrillary acidic protein positive neural progenitor cells, in mice. We found that ablation of adult neurogenesis did not impair the ability to learn the initial location of a shock zone. However, when conflict was introduced by switching the location of the shock zone to the opposite side of the room, irradiated and transgenic mice entered the new shock zone location significantly more than their respective controls. This impairment was associated with increased upregulation of the immediate early gene Arc in the dorsal dentate gyrus, suggesting a role for adult neurogenesis in modulating network excitability and/or synaptic plasticity. Additional experiments revealed that irradiated mice were also impaired in learning to avoid a rotating shock zone when it was added to an initially learned stationary shock zone, but were unimpaired in learning the identical simultaneous task variant if it was their initial experience with place avoidance. Impaired avoidance could not be attributed to a deficit in extinction or an inability to learn a new shock zone location in a different environment. Together these results demonstrate that adult neurogenesis contributes to cognitive flexibility when it requires changing a learned response to a stimulus-evoked memory.


Asunto(s)
Cognición/fisiología , Hipocampo/citología , Hipocampo/fisiología , Neurogénesis/fisiología , Animales , Reacción de Prevención/fisiología , Reacción de Prevención/efectos de la radiación , Cognición/efectos de la radiación , Conflicto Psicológico , Proteínas del Citoesqueleto/metabolismo , Proteínas de Dominio Doblecortina , Hipocampo/crecimiento & desarrollo , Hipocampo/efectos de la radiación , Inmunohistoquímica , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de la radiación , Neuropéptidos/metabolismo
8.
Hippocampus ; 22(5): 1188-201, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21739523

RESUMEN

To explore the role of adult hippocampal neurogenesis in novelty processing, we assessed novel object recognition (NOR) in mice after neurogenesis was arrested using focal x-irradiation of the hippocampus, or a reversible, genetic method in which glial fibrillary acidic protein-positive neural progenitor cells are ablated with ganciclovir. Arresting neurogenesis did not alter general activity or object investigation during four exposures with two constant objects. However, when a novel object replaced a constant object, mice with neurogenesis arrested by either ablation method showed increased exploration of the novel object when compared with control mice. The increased novel object exploration did not manifest until 4-6 weeks after x-irradiation or 6 weeks following a genetic ablation, indicating that exploration of the novel object is increased specifically by the elimination of 4- to 6-week-old adult born neurons. The increased novel object exploration was also observed in older mice, which exhibited a marked reduction in neurogenesis relative to young mice. Mice with neurogenesis arrested by either ablation method were also impaired in one-trial contextual fear conditioning (CFC) at 6 weeks but not at 4 weeks following ablation, further supporting the idea that 4- to 6-week-old adult born neurons are necessary for specific forms of hippocampal-dependent learning, and suggesting that the NOR and CFC effects have a common underlying mechanism. These data suggest that the transient enhancement of plasticity observed in young adult-born neurons contributes to cognitive functions.


Asunto(s)
Condicionamiento Psicológico/fisiología , Conducta Exploratoria/fisiología , Miedo/fisiología , Hipocampo/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Ganciclovir/efectos adversos , Proteína Ácida Fibrilar de la Glía/genética , Hipocampo/efectos de la radiación , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Timidina Quinasa/genética , Factores de Tiempo
9.
Hippocampus ; 22(5): 1107-20, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-21630373

RESUMEN

Although reductions in the expression of the calcium-buffering proteins calbindin D-28K (CB) and parvalbumin (PV) have been observed in the aging brain, it is unknown whether these changes contribute to age-related hippocampal dysfunction. To address this issue, we measured basal hippocampal metabolism and hippocampal structure across the lifespan of C57BL/6J, calbindin D-28k knockout (CBKO) and parvalbumin knockout (PVKO) mice. Basal metabolism was estimated using steady state relative cerebral blood volume (rCBV), which is a variant of fMRI that provides the highest spatial resolution, optimal for the analysis of individual subregions of the hippocampal formation. We found that like primates, normal aging in C57BL/6J mice is characterized by an age-dependent decline in rCBV-estimated dentate gyrus (DG) metabolism. Although abnormal hippocampal fMRI signals were observed in CBKO and PVKO mice, only CBKO mice showed accelerated age-dependent decline of rCBV-estimated metabolism in the DG. We also found age-independent structural changes in CBKO mice, which included an enlarged hippocampus and neocortex as well as global brain hypertrophy. These metabolic and structural changes in CBKO mice correlated with a deficit in hippocampus-dependent learning in the active place avoidance task. Our results suggest that the decrease in CB that occurs during normal aging is involved in age-related hippocampal metabolic decline. Our findings also illustrate the value of using multiple MRI techniques in transgenic mice to investigate mechanisms involved in the functional and structural changes that occur during aging.


Asunto(s)
Envejecimiento/metabolismo , Giro Dentado/metabolismo , Hipocampo/metabolismo , Imagen por Resonancia Magnética , Proteína G de Unión al Calcio S100/metabolismo , Análisis de Varianza , Animales , Reacción de Prevención/fisiología , Calbindinas , Circulación Cerebrovascular/fisiología , Giro Dentado/fisiopatología , Hipocampo/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Parvalbúminas/genética , Parvalbúminas/metabolismo , Proteína G de Unión al Calcio S100/genética
10.
J Exp Neurol ; 2(1): 21-28, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33768216

RESUMEN

Activity-based anorexia (ABA) is a commonly used rodent model of anorexia nervosa that is based on observations made in rats decades ago. In recently published work, we describe using this paradigm to model vulnerability and resilience to anorexia nervosa in mice, where vulnerability is characterized by hyperactivity and life-threatening weight loss and resilience is characterized by adaptation and weight stabilization. Using genetically modified hyperdopaminergic mice, we also demonstrate that increased dopamine augments vulnerability to ABA. Here, we briefly review our findings and discuss how obtaining vulnerable and resilient phenotypes enhances utility of the ABA model for understanding the neurobiological basis of anorexia nervosa. We comment on our dopamine findings and close by discussing implications for clinical treatment.

11.
Bio Protoc ; 11(9): e4009, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34124309

RESUMEN

Activity-based anorexia (ABA) is a widely used rodent model of anorexia nervosa. It involves combining limited access to food with unlimited access to a running wheel, leading to a paradoxical decrease in food intake, hyperactivity, and life-threatening weight loss. Although initially characterized in rats, ABA has been tested in mice with results that vary based on strain, sex, age, the amount of time food is available, and the number of days of food restriction. Here, we present our ABA protocol for modeling both vulnerability and resilience to diet and exercise in C57BL/6 female mice. While vulnerable mice exhibit the expected increase in running, reduction in food intake, and excessive weight loss, resilient mice exhibit an adaptive increase in food intake, decrease in total wheel running, and weight stabilization. In contrast to previous ABA studies in which resilience is defined by the relative rate of weight loss, our protocol leads to a resilient phenotype that more closely resembles the maintenance of a stable bodyweight exhibited by most humans who diet and exercise without developing anorexia nervosa. This protocol will be useful for future studies aimed at identifying the physiological and neural adaptations underlying both resilience and vulnerability to this eating disorder.

12.
Front Psychiatry ; 12: 799548, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087433

RESUMEN

Dopamine has long been implicated as a critical neural substrate mediating anorexia nervosa (AN). Despite nearly 50 years of research, the putative direction of change in dopamine function remains unclear and no consensus on the mechanistic role of dopamine in AN has been achieved. We hypothesize two stages in AN- corresponding to initial development and entrenchment- characterized by opposite changes in dopamine. First, caloric restriction, particularly when combined with exercise, triggers an escalating spiral of increasing dopamine that facilitates the behavioral plasticity necessary to establish and reinforce weight-loss behaviors. Second, chronic self-starvation reverses this escalation to reduce or impair dopamine which, in turn, confers behavioral inflexibility and entrenchment of now established AN behaviors. This pattern of enhanced, followed by impaired dopamine might be a common path to many behavioral disorders characterized by reinforcement learning and subsequent behavioral inflexibility. If correct, our hypothesis has significant clinical and research implications for AN and other disorders, such as addiction and obesity.

13.
Biol Psychiatry ; 90(12): 829-842, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32950210

RESUMEN

BACKGROUND: Increased physical activity is a common feature of anorexia nervosa (AN). Although high activity levels are associated with greater risk of developing AN, particularly when combined with dieting, most individuals who diet and exercise maintain a healthy body weight. It is unclear why some individuals develop AN while most do not. A rodent model of resilience and vulnerability to AN would be valuable to research. Dopamine, which is believed to play a crucial role in AN, regulates both reward and activity and may modulate vulnerability. METHODS: Adolescent and young adult female C57BL/6N mice were tested in the activity-based anorexia (ABA) model, with an extended period of food restriction in adult mice. ABA was also tested in dopamine transporter knockdown mice and wild-type littermates. Mice that adapted to conditions and maintained a stable body weight were characterized as resilient. RESULTS: In adults, vulnerable and resilient phenotypes emerged in both the ABA and food-restricted mice without wheels. Vulnerable mice exhibited a pronounced increase in running throughout the light cycle, which dramatically peaked prior to requiring removal from the experiment. Resilient mice exhibited an adaptive decrease in total running, appropriate food anticipatory activity, and increased consumption, thereby achieving stable body weight. Hyperdopaminergia accelerated progression of the vulnerable phenotype. CONCLUSIONS: Our demonstration of distinct resilient and vulnerable phenotypes in mouse ABA significantly advances the utility of the model for identifying genes and neural substrates mediating AN risk and resilience. Modulation of dopamine may play a central role in the underlying circuit.


Asunto(s)
Anorexia Nerviosa , Animales , Anorexia , Anorexia Nerviosa/genética , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , Fenotipo
14.
Elife ; 82019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31407664

RESUMEN

Exposure to stress increases the risk of developing mood disorders. While a subset of individuals displays vulnerability to stress, others remain resilient, but the molecular basis for these behavioral differences is not well understood. Using a model of chronic social defeat stress, we identified region-specific differences in myelination between mice that displayed social avoidance behavior ('susceptible') and those who escaped the deleterious effect to stress ('resilient'). Myelin protein content in the nucleus accumbens was reduced in all mice exposed to stress, whereas decreased myelin thickness and internodal length were detected only in the medial prefrontal cortex (mPFC) of susceptible mice, with fewer mature oligodendrocytes and decreased heterochromatic histone marks. Focal demyelination in the mPFC was sufficient to decrease social preference, which was restored following new myelin formation. Together these data highlight the functional role of mPFC myelination as critical determinant of the avoidance response to traumatic social experiences. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).


Asunto(s)
Conducta Animal , Proteínas de la Mielina/análisis , Vaina de Mielina/metabolismo , Núcleo Accumbens/química , Conducta Social , Estrés Fisiológico , Animales , Enfermedades Desmielinizantes , Ratones
15.
Neuropsychopharmacology ; 44(4): 733-742, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30542090

RESUMEN

Chronic exposure to stress is a well-known risk factor for the development of mood and anxiety disorders. Promoting resilience to stress may prevent the development of these disorders, but resilience-enhancing compounds are not yet clinically available. One compound that has shown promise in the clinical setting is curcumin, a polyphenol compound found in the rhizome of the turmeric plant (Curcuma longa) with known anti-inflammatory and antidepressant properties. Here, we tested the efficacy of 1.5% dietary curcumin at promoting resilience to chronic social defeat stress (CSDS) in 129/SvEv mice, a strain that we show is highly susceptible to this type of stress. We found that administration of curcumin during CSDS produced a 4.5-fold increase in stress resilience, as measured by the social interaction test. Although the overall effects of curcumin were striking, we identified two distinct responses to curcumin. While 64% of defeated mice on curcumin were resilient (responders), the remaining 36% of mice were susceptible to the effects of stress (non-responders). Interestingly, responders released less corticosterone following acute restraint stress and had lower levels of peripheral IL-6 than nonresponders, implicating a role for the NF-κB pathway in treatment response. Importantly, curcumin also prevented anxiety-like behavior in both responders and non-responders in the elevated-plus maze and open field test. Collectively, our findings provide the first preclinical evidence that curcumin promotes resilience to CSDS and suggest that curcumin may prevent the emergence of a range of anxiety-like symptoms when given to individuals during exposure to chronic social stress.


Asunto(s)
Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Fármacos del Sistema Nervioso Central/farmacología , Curcumina/farmacología , Resiliencia Psicológica/efectos de los fármacos , Estrés Psicológico/prevención & control , Animales , Ansiedad/sangre , Ansiedad/dietoterapia , Ansiedad/fisiopatología , Fármacos del Sistema Nervioso Central/administración & dosificación , Corticosterona/sangre , Curcumina/administración & dosificación , Interleucina-6/sangre , Masculino , Ratones , Ratones de la Cepa 129 , Estrés Psicológico/sangre , Estrés Psicológico/dietoterapia , Estrés Psicológico/fisiopatología
16.
Science ; 364(6440): 578-583, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31073064

RESUMEN

Young adult-born granule cells (abGCs) in the dentate gyrus (DG) have a profound impact on cognition and mood. However, it remains unclear how abGCs distinctively contribute to local DG information processing. We found that the actions of abGCs in the DG depend on the origin of incoming afferents. In response to lateral entorhinal cortex (LEC) inputs, abGCs exert monosynaptic inhibition of mature granule cells (mGCs) through group II metabotropic glutamate receptors. By contrast, in response to medial entorhinal cortex (MEC) inputs, abGCs directly excite mGCs through N-methyl-d-aspartate receptors. Thus, a critical function of abGCs may be to regulate the relative synaptic strengths of LEC-driven contextual information versus MEC-driven spatial information to shape distinct neural representations in the DG.


Asunto(s)
Giro Dentado/fisiología , Corteza Entorrinal/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Animales , Células Cultivadas , Potenciales Evocados , Humanos , Ratones , Ratones Transgénicos , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología
17.
Biol Psychiatry ; 62(10): 1111-8, 2007 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-17524369

RESUMEN

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) effectively treat various anxiety disorders, although symptoms of anxiety are often exacerbated during early stages of treatment. We previously reported that acute treatment with the SSRI citalopram enhances the acquisition of auditory fear conditioning, which is consistent with the initial anxiogenic effects reported clinically. Here, we extend our findings by assessing the effects of acute SSRI treatment on the expression of previously acquired conditioned fear. METHODS: Rats underwent fear conditioning drug-free. Tone-evoked fear responses were tested after drug treatment the following day. This protocol more closely resembles the clinical setting than pre-conditioning treatment, because it evaluates effects of treatment on a pre-existing fear rather than on the formation of a new fear memory. RESULTS: A single pre-testing injection of the SSRIs citalopram or fluoxetine significantly increased fear expression. There was no effect of the antidepressant tianeptine or the norepinephrine reuptake inhibitor tomoxetine, indicating that this effect is specific to SSRIs. The SSRI-induced enhancement in fear expression was not blocked by tropisetron, a 5-HT(3) receptor antagonist, but was blocked by SB 242084, a specific 5-HT(2C) receptor antagonist. CONCLUSIONS: Enhanced activation of 5-HT(2C) receptors might be a mechanism for the anxiogenic effects of SSRIs observed initially during treatment.


Asunto(s)
Condicionamiento Psicológico/efectos de los fármacos , Miedo/psicología , Indoles/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Antagonistas de la Serotonina/farmacología , Estimulación Acústica/efectos adversos , Animales , Conducta Animal/efectos de los fármacos , Citalopram/farmacología , Condicionamiento Psicológico/fisiología , Interacciones Farmacológicas , Fluoxetina/farmacología , Reacción Cataléptica de Congelación/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Tropisetrón
18.
Front Behav Neurosci ; 10: 191, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27818625

RESUMEN

Stress can significantly impact brain function and increase the risk for developing various psychiatric disorders. Many of the brain regions that are implicated in psychiatric disorders and are vulnerable to the effects of stress are also involved in mediating emotional learning. Emotional learning has been a subject of intense investigation for the past 30 years, with the vast majority of studies focusing on the amygdala and its role in associative fear learning. However, the mechanisms by which stress affects the amygdala and amygdala-dependent fear memories remain unclear. Here we review the literature on the enhancing effects of acute and chronic stress on the acquisition and/or consolidation of a fear memory, as measured by auditory Pavlovian fear conditioning, and discuss potential mechanisms by which these changes occur in the amygdala. We hypothesize that stress-mediated activation of glucocorticoid receptors (GR) and norepinephrine release within the amygdala leads to the mobilization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the synapse, which underlies stress-induced increases in fear memory. We discuss the implications of this hypothesis for evaluating the effects of stress on extinction and for developing treatments for anxiety disorders. Understanding how stress-induced changes in glucocorticoid and norepinephrine signaling might converge to affect emotional learning by increasing the trafficking of AMPA receptors and enhancing amygdala excitability is a promising area for future research.

19.
Exp Neurol ; 264: 135-49, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25476494

RESUMEN

Adult neurogenesis, the generation of new neurons in the adult brain, occurs in the hippocampal dentate gyrus (DG) and the olfactory bulb (OB) of all mammals, but the functions of these new neurons are not entirely clear. Originally, adult-born neurons were considered to have excitatory effects on the DG network, but recent studies suggest a net inhibitory effect. Therefore, we hypothesized that selective removal of newborn neurons would lead to increased susceptibility to the effects of a convulsant. This hypothesis was tested by evaluating the response to the chemoconvulsant kainic acid (KA) in mice with reduced adult neurogenesis, produced either by focal X-irradiation of the DG, or by pharmacogenetic deletion of dividing radial glial precursors. In the first 4 hrs after KA administration, when mice have the most robust seizures, mice with reduced adult neurogenesis had more severe convulsive seizures, exhibited either as a decreased latency to the first convulsive seizure, greater number of convulsive seizures, or longer convulsive seizures. Nonconvulsive seizures did not appear to change or they decreased. Four-21 hrs after KA injection, mice with reduced adult neurogenesis showed more interictal spikes (IIS) and delayed seizures than controls. Effects were greater when the anticonvulsant ethosuximide was injected 30 min prior to KA administration; ethosuximide allows forebrain seizure activity to be more easily examined in mice by suppressing seizures dominated by the brainstem. These data support the hypothesis that reduction of adult-born neurons increases the susceptibility of the brain to effects of KA.


Asunto(s)
Agonistas de Aminoácidos Excitadores/farmacología , Ácido Kaínico/farmacología , Neurogénesis/efectos de los fármacos , Animales , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteínas de Dominio Doblecortina , Electroencefalografía , Etosuximida/uso terapéutico , Ganciclovir/análogos & derivados , Ganciclovir/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/efectos de los fármacos , Neuropéptidos/metabolismo , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Valganciclovir , Rayos X
20.
Biol Psychiatry ; 55(12): 1171-8, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15184036

RESUMEN

BACKGROUND: Selective serotonin reuptake inhibitors (SSRIs) are efficacious in the treatment of a variety of fear or anxiety disorders. Although they inhibit the reuptake of serotonin within hours of administration, therapeutic improvement only occurs after several weeks. In this study, we used fear conditioning to begin to understand how acute and chronic SSRI treatment might differentially affect well-characterized fear circuits. METHODS: We evaluated the effects of acute and chronic treatment with the SSRI citalopram on the acquisition of auditory fear conditioning. To further understand the role of serotonin in modulating fear circuits, we compared these effects with those of acute and chronic administration of the antidepressant tianeptine, a purported serotonin reuptake enhancer. RESULTS: We found that acute administration of the SSRI citalopram enhanced acquisition, whereas chronic treatment reduced the acquisition of auditory fear conditioning. In comparison, treatment with tianeptine had no effect acutely but also reduced the acquisition of tone conditioning when administered chronically. CONCLUSIONS: Our findings with citalopram are consistent with the clinical effects of SSRI treatment seen in patients with anxiety disorders, in which anxiety is often increased during early stages of treatment and decreased after several weeks of treatment. The findings also indicate that auditory fear conditioning can be a useful tool in understanding differences in the effects of short-term and long-term antidepressant treatment with serotonergic medications.


Asunto(s)
Antidepresivos de Segunda Generación/farmacología , Antidepresivos/farmacología , Citalopram/farmacología , Miedo/efectos de los fármacos , Tiazepinas/farmacología , Estimulación Acústica , Animales , Condicionamiento Psicológico , Habituación Psicofisiológica/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA