Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 173(6): 1329-1342.e18, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29731170

RESUMEN

Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. VIDEO ABSTRACT.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Corteza Cerebral/fisiología , Aprendizaje/fisiología , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal , Condicionamiento Clásico , Fenómenos Electrofisiológicos , Miedo , Luz , Masculino , Memoria/fisiología , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética , Corteza Prefrontal/fisiología
2.
Nature ; 563(7731): 397-401, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30405240

RESUMEN

Dopamine modulates medial prefrontal cortex (mPFC) activity to mediate diverse behavioural functions1,2; however, the precise circuit computations remain unknown. One potentially unifying model by which dopamine may underlie a diversity of functions is by modulating the signal-to-noise ratio in subpopulations of mPFC neurons3-6, where neural activity conveying sensory information (signal) is amplified relative to spontaneous firing (noise). Here we demonstrate that dopamine increases the signal-to-noise ratio of responses to aversive stimuli in mPFC neurons projecting to the dorsal periaqueductal grey (dPAG). Using an electrochemical approach, we reveal the precise time course of pinch-evoked dopamine release in the mPFC, and show that mPFC dopamine biases behavioural responses to aversive stimuli. Activation of mPFC-dPAG neurons is sufficient to drive place avoidance and defensive behaviours. mPFC-dPAG neurons display robust shock-induced excitations, as visualized by single-cell, projection-defined microendoscopic calcium imaging. Finally, photostimulation of dopamine terminals in the mPFC reveals an increase in the signal-to-noise ratio in mPFC-dPAG responses to aversive stimuli. Together, these data highlight how dopamine in the mPFC can selectively route sensory information to specific downstream circuits, representing a potential circuit mechanism for valence processing.


Asunto(s)
Reacción de Prevención/fisiología , Dopamina/metabolismo , Sustancia Gris Periacueductal/citología , Sustancia Gris Periacueductal/fisiología , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología , Animales , Señalización del Calcio , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas , Ratas , Ratas Long-Evans , Relación Señal-Ruido , Análisis de la Célula Individual , Cola (estructura animal)
3.
eNeuro ; 11(2)2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38272673

RESUMEN

Learning and adaptation during sources of threat and safety are critical mechanisms for survival. The prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) have been broadly implicated in the processing of threat and safety. However, how these regions regulate threat and safety during naturalistic conditions involving thermal challenge still remains elusive. To examine this issue, we developed a novel paradigm in which adult mice learned that a particular zone that was identified with visuospatial cues was associated with either a noxious cold temperature ("threat zone") or a pleasant warm temperature ("safety zone"). This led to the rapid development of avoidance behavior when the zone was paired with cold threat or approach behavior when the zone was paired with warm safety. During a long-term test without further thermal reinforcement, mice continued to exhibit robust avoidance or approach to the zone of interest, indicating that enduring spatial-based memories were formed to represent the thermal threat and thermal safety zones. Optogenetic experiments revealed that neural activity in PL and IL was not essential for establishing the memory for the threat zone. However, PL and IL activity bidirectionally regulated memory formation for the safety zone. While IL activity promoted safety memory during normal conditions, PL activity suppressed safety memory especially after a stress pretreatment. Therefore, a working model is proposed in which balanced activity between PL and IL is favorable for safety memory formation, whereas unbalanced activity between these brain regions is detrimental for safety memory after stress.


Asunto(s)
Señales (Psicología) , Corteza Prefrontal , Ratones , Animales , Corteza Prefrontal/fisiología , Reacción de Prevención/fisiología
4.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38895224

RESUMEN

Social phobia is highly detrimental for social behavior, mental health, and productivity. Despite much previous research, the behavioral and neurobiological mechanisms associated with the development of social phobia remain elusive. To investigate these issues, the present study implemented a mouse model of social threat conditioning in which mice received electric shock punishment upon interactions with unfamiliar conspecifics. This resulted in immediate reductions in social behavior and robust increases in defensive mechanisms such as avoidance, freezing, darting, and ambivalent stretched posture. Furthermore, social deficits lasted for prolonged periods and were independent of contextual settings, sex variables, or particular identity of the social stimuli. Shedding new light into the neurobiological factors contributing to this phenomenon, we found that optogenetic silencing of the prelimbic (PL), but not the infralimbic (IL), subregion of the medial prefrontal cortex (mPFC) during training led to subsequent forgetting and development of lasting social phobia. Similarly, pharmacological inhibition of NMDARs in PL also impaired the development of social phobia. These findings are consistent with the notion that social-related trauma is a prominent risk factor for the development of social phobia, and that this phenomenon engages learning-related mechanisms within the prelimbic prefrontal cortex to promote prolonged representations of social threat.

5.
Elife ; 122024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376907

RESUMEN

Basal forebrain cholinergic neurons modulate how organisms process and respond to environmental stimuli through impacts on arousal, attention, and memory. It is unknown, however, whether basal forebrain cholinergic neurons are directly involved in conditioned behavior, independent of secondary roles in the processing of external stimuli. Using fluorescent imaging, we found that cholinergic neurons are active during behavioral responding for a reward - even prior to reward delivery and in the absence of discrete stimuli. Photostimulation of basal forebrain cholinergic neurons, or their terminals in the basolateral amygdala (BLA), selectively promoted conditioned responding (licking), but not unconditioned behavior nor innate motor outputs. In vivo electrophysiological recordings during cholinergic photostimulation revealed reward-contingency-dependent suppression of BLA neural activity, but not prefrontal cortex. Finally, ex vivo experiments demonstrated that photostimulation of cholinergic terminals suppressed BLA projection neuron activity via monosynaptic muscarinic receptor signaling, while also facilitating firing in BLA GABAergic interneurons. Taken together, we show that the neural and behavioral effects of basal forebrain cholinergic activation are modulated by reward contingency in a target-specific manner.


Asunto(s)
Amígdala del Cerebelo , Complejo Nuclear Basolateral , Neuronas Colinérgicas , Interneuronas , Recompensa
6.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948883

RESUMEN

Traumatic social experiences redefine socially motivated behaviors to enhance safety and survival. Although many brain regions have been implicated in signaling a social threat, the mechanisms by which global neural networks regulate such motivated behaviors remain unclear. To address this issue, we first combined traditional and modern behavioral tracking techniques in mice to assess both approach and avoidance, as well as sub-second behavioral changes, during a social threat learning task. We were able to identify previously undescribed body and tail movements during social threat learning and recognition that demonstrate unique alterations into the behavioral structure of social motivation. We then utilized inter-regional correlation analysis of brain activity after a mouse recognizes a social threat to explore functional communication amongst brain regions implicated in social motivation. Broad brain activity changes were observed within the nucleus accumbens, the paraventricular thalamus, the ventromedial hypothalamus, and the nucleus of reuniens. Inter-regional correlation analysis revealed a reshaping of the functional connectivity across the brain when mice recognize a social threat. Altogether, these findings suggest that reshaping of functional brain connectivity may be necessary to alter the behavioral structure of social motivation when a social threat is encountered.

7.
J Neurophysiol ; 110(4): 844-61, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23699055

RESUMEN

The acquisition and expression of conditioned fear depends on prefrontal-amygdala circuits. Auditory fear conditioning increases the tone responses of lateral amygdala neurons, but the increase is transient, lasting only a few hundred milliseconds after tone onset. It was recently reported that that the prelimbic (PL) prefrontal cortex transforms transient lateral amygdala input into a sustained PL output, which could drive fear responses via projections to the lateral division of basal amygdala (BL). To explore the possible mechanisms involved in this transformation, we developed a large-scale biophysical model of the BL-PL network, consisting of 850 conductance-based Hodgkin-Huxley-type cells, calcium-based learning, and neuromodulator effects. The model predicts that sustained firing in PL can be derived from BL-induced release of dopamine and norepinephrine that is maintained by PL-BL interconnections. These predictions were confirmed with physiological recordings from PL neurons during fear conditioning with the selective ß-blocker propranolol and by inactivation of BL with muscimol. Our model suggests that PL has a higher bandwidth than BL, due to PL's decreased internal inhibition and lower spiking thresholds. It also suggests that variations in specific microcircuits in the PL-BL interconnection can have a significant impact on the expression of fear, possibly explaining individual variability in fear responses. The human homolog of PL could thus be an effective target for anxiety disorders.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Modelos Neurológicos , Neuronas/fisiología , Corteza Prefrontal/fisiología , Estimulación Acústica , Animales , Condicionamiento Psicológico/fisiología , Masculino , Vías Nerviosas , Ratas , Ratas Sprague-Dawley
8.
bioRxiv ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205585

RESUMEN

Safety learning is a critical function for behavioral adaptation, environmental fitness, and mental health. Animal models have implicated the prelimbic (PL) and infralimbic (IL) subregions of the medial prefrontal cortex (mPFC) in safety learning. However, whether these regions differentially contribute to safety learning and how their contributions become affected by stress still remain poorly understood. In this study, we evaluated these issues using a novel semi-naturalistic mouse model for threat and safety learning. As mice navigated within a test arena, they learned that specific zones were associated with either noxious cold temperatures ("threat") or pleasant warm temperatures ("safety"). Optogenetic-mediated inhibition revealed critical roles for the IL and PL regions for selectively controlling safety learning during these naturalistic conditions. This form of safety learning was also highly susceptible to stress pre-exposure, and while IL inhibition mimicked the deficits produced by stress, PL inhibition fully rescued safety learning in stress-exposed mice. Collectively, these findings indicate that IL and PL bidirectionally regulate safety learning during naturalistic situations, with the IL region promoting this function and the PL region suppressing it, especially after stress. A model of balanced IL and PL activity is proposed as a fundamental mechanism for controlling safety learning.

9.
Neuron ; 53(6): 871-80, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17359921

RESUMEN

Extinction of conditioned fear is an active learning process requiring N-methyl-D-aspartate receptors (NMDARs), but the timing, location, and neural mechanisms of NMDAR-mediated processing in extinction are a matter of debate. Here we show that infusion of the NMDAR antagonist CPP into the ventromedial prefrontal cortex (vmPFC) prior to, or immediately after, extinction training impaired 24 hr recall of extinction. These findings indicate that consolidation of extinction requires posttraining activation of NMDARs within the vmPFC. Using multichannel unit recording, we observed that CPP selectively reduced burst firing in vmPFC neurons, suggesting that bursting in vmPFC is necessary for consolidation of extinction. In support of this, we found that the degree of bursting in infralimbic vmPFC neurons shortly after extinction predicted subsequent recall of extinction. We suggest that NMDAR-dependent bursting in the infralimbic vmPFC initiates calcium-dependent molecular cascades that stabilize extinction memory, thereby allowing for successful recall of extinction.


Asunto(s)
Potenciales de Acción/fisiología , Condicionamiento Psicológico/fisiología , Extinción Psicológica/fisiología , Miedo , Corteza Prefrontal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Potenciales de Acción/efectos de los fármacos , Análisis de Varianza , Animales , Conducta Animal , Condicionamiento Psicológico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Extinción Psicológica/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Piperazinas/farmacología , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
10.
J Neurosci ; 29(26): 8474-82, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19571138

RESUMEN

During auditory fear conditioning, it is well established that lateral amygdala (LA) neurons potentiate their response to the tone conditioned stimulus, and that this potentiation is required for conditioned fear behavior. Conditioned tone responses in LA, however, last only a few hundred milliseconds and cannot be responsible for sustained fear responses to a tone lasting tens of seconds. Recent evidence from inactivation and stimulation studies suggests that the prelimbic (PL) prefrontal cortex is necessary for expression of learned fears, but the timing of PL tone responses and correlations with fear behavior have not been studied. Using multichannel unit recording techniques in behaving rats, we observed sustained conditioned tone responses in PL that were correlated with freezing behavior on a second-to-second basis during the presentation of a 30 s tone. PL tone responses were also correlated with conditioned freezing across different experimental phases (habituation, conditioning, extinction). Moreover, the persistence of PL responses after extinction training was associated with failure to express extinction memory. Together with previous inactivation findings, the present results suggest that PL transforms transient amygdala inputs to a sustained output that drives conditioned fear responses and gates the expression of extinction. Given the relatively long latency of conditioned responses we observed in PL (approximately 100 ms after tone onset), we propose that PL integrates inputs from the amygdala, hippocampus, and other cortical sources to regulate the expression of fear memories.


Asunto(s)
Potenciales de Acción/fisiología , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo , Neuronas/fisiología , Corteza Prefrontal/citología , Estimulación Acústica/métodos , Análisis de Varianza , Animales , Mapeo Encefálico , Electrochoque/efectos adversos , Reacción Cataléptica de Congelación/fisiología , Masculino , Neuronas/clasificación , Ratas , Ratas Sprague-Dawley , Estadística como Asunto , Factores de Tiempo
11.
Neurosci Biobehav Rev ; 107: 215-228, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31509768

RESUMEN

The ability to observe, interpret, and learn behaviors and emotions from conspecifics is crucial for survival, as it bypasses direct experience to avoid potential dangers and maximize rewards and benefits. The anterior cingulate cortex (ACC) and its extended neural connections are emerging as important networks for the detection, encoding, and interpretation of social signals during observational learning. Evidence from rodents and primates (including humans) suggests that the social interactions that occur while individuals are exposed to important information in their environment lead to transfer of information across individuals that promotes adaptive behaviors in the form of either social affiliation, alertness, or avoidance. In this review, we first showcase anatomical and functional connections of the ACC in primates and rodents that contribute to the perception of social signals. We then discuss species-specific cognitive and social functions of the ACC and differentiate between neural activity related to 'self' and 'other', extending into the difference between social signals received and processed by the self, versus observing social interactions among others. We next describe behavioral and neural events that contribute to social learning via observation. Finally, we discuss some of the neural mechanisms underlying observational learning within the ACC and its extended network.


Asunto(s)
Giro del Cíngulo/fisiología , Red Nerviosa/fisiología , Aprendizaje Social/fisiología , Animales , Miedo/psicología , Especificidad de la Especie
12.
Elife ; 72018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29851381

RESUMEN

Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses.


Asunto(s)
Reacción de Prevención/fisiología , Sistema Límbico/fisiología , Inhibición Neural/fisiología , Corteza Prefrontal/fisiología , Animales , Ansiedad/fisiopatología , Miedo , Locomoción , Masculino , Optogenética , Ratas Sprague-Dawley
13.
Nat Neurosci ; 20(6): 824-835, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28436980

RESUMEN

Orchestrating appropriate behavioral responses in the face of competing signals that predict either rewards or threats in the environment is crucial for survival. The basolateral nucleus of the amygdala (BLA) and prelimbic (PL) medial prefrontal cortex have been implicated in reward-seeking and fear-related responses, but how information flows between these reciprocally connected structures to coordinate behavior is unknown. We recorded neuronal activity from the BLA and PL while rats performed a task wherein competing shock- and sucrose-predictive cues were simultaneously presented. The correlated firing primarily displayed a BLA→PL directionality during the shock-associated cue. Furthermore, BLA neurons optogenetically identified as projecting to PL more accurately predicted behavioral responses during competition than unidentified BLA neurons. Finally photostimulation of the BLA→PL projection increased freezing, whereas both chemogenetic and optogenetic inhibition reduced freezing. Therefore, the BLA→PL circuit is critical in governing the selection of behavioral responses in the face of competing signals.


Asunto(s)
Amígdala del Cerebelo/fisiología , Corteza Prefrontal/fisiología , Castigo , Recompensa , 2-Amino-5-fosfonovalerato/administración & dosificación , 2-Amino-5-fosfonovalerato/farmacología , Potenciales de Acción/fisiología , Animales , Condicionamiento Clásico/efectos de los fármacos , Condicionamiento Clásico/fisiología , Señales (Psicología) , Discriminación en Psicología/efectos de los fármacos , Discriminación en Psicología/fisiología , Estimulación Eléctrica , Pérdida de Tono Postural/fisiología , Masculino , Microinyecciones , Inhibición Neural/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/efectos de los fármacos , Quinoxalinas/administración & dosificación , Quinoxalinas/farmacología , Ratas , Ratas Transgénicas , Sacarosa
14.
PLoS One ; 8(2): e57575, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23460877

RESUMEN

It is thought that discrete subregions of the medial prefrontal cortex (mPFC) regulate different aspects of appetitive behavior, however, physiological support for this hypothesis has been lacking. In the present study, we used multichannel single-unit recording to compare the response of neurons in the prelimbic (PL) and infralimbic (IL) subregions of the mPFC, in rats pressing a lever to obtain sucrose pellets on a variable interval schedule of reinforcement (VI-60). Approximately 25% of neurons in both structures exhibited prominent excitatory responses during rewarded, but not unrewarded, lever presses. The time courses of reward responses in PL and IL, however, were markedly different. Most PL neurons exhibited fast and transient responses at the delivery of sucrose pellets, whereas most IL neurons exhibited delayed and prolonged responses associated with the collection of earned sucrose pellets. We further examined the functional significance of reward responses in IL and PL with local pharmacological inactivation. IL inactivation significantly delayed the collection of earned sucrose pellets, whereas PL inactivation produced no discernible effects. These findings support the hypothesis that PL and IL signal distinct aspects of appetitive behavior, and suggest that IL signaling facilitates reward collection.


Asunto(s)
Conducta Apetitiva/fisiología , Condicionamiento Operante/fisiología , Sistema Límbico/fisiología , Neuronas/fisiología , Animales , Conducta Apetitiva/efectos de los fármacos , Condicionamiento Operante/efectos de los fármacos , Sistema Límbico/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Tiempo de Reacción/efectos de los fármacos , Recompensa , Sacarosa/farmacología , Factores de Tiempo
15.
Chin Med ; 7(1): 14, 2012 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-22682006

RESUMEN

BACKGROUND: Transcutaneous electric acupoint stimulation (TEAS) avoids the use of needles, and instead delivers a mild electric current at traditional acupoints. This technique has been used for treating heroin addiction, but has not been systematically tested for other drugs of abuse. This study aims to investigate the effects of TEAS on drug addiction. METHODS: Volunteers who were either cocaine-dependent (n = 9) or cannabis-dependent (n = 11) but were not seeking treatment for their dependence participated in a within-subject, single-blind study. Treatment consisted of twice daily 30-minute sessions of TEAS or sham stimulation for 3.5 days. The active TEAS levels were individually adjusted to produce a distinct twitching response in the fingers, while the sham stimulation involved 2 minutes of stimulation at threshold levels followed by 28 minutes of stimulation below the detection levels. The participants recorded their drug use and drug cravings daily. At 1 hour after the last morning session of TEAS or sham stimulation, a cue-induced craving EEG evaluation was conducted. Event-related P300 potentials (ERPs) were recorded, sorted, and analyzed for specific image types (neutral objects, non-drug-related arousing images, or drug-related images). RESULTS: TEAS treatment did not significantly reduce the drug use or drug cravings, or significantly alter the ERP peak voltage or latency to peak response. However, the TEAS treatment did significantly modulate several self-reported measures of mood and anxiety. CONCLUSION: The results of this pilot study with a limited sample size suggest that the acupoint stimulation techniques and protocol used in this trial alone do not significantly reduce cravings for or use of cocaine or cannabis. The findings that TEAS modulates mood and anxiety suggest that TEAS could be used as an adjunct in a multimodal therapy program to treat cocaine and cannabis dependence if confirmed in a full randomized controlled clinical trial.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA