Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Physiol ; 189(4): 2175-2192, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35608297

RESUMEN

Eukaryotic precursor mRNAs often harbor noncoding introns that must be removed prior to translation. Accurate splicing of precursor messenger RNA depends on placement and assembly of small nuclear ribonucleoprotein (snRNP) sub-complexes of the spliceosome. Yeast (Saccharomyces cerevisiae) studies established a role in splice-site selection for PRE-RNA PROCESSING8 (PRP8), a conserved spliceosome scaffolding protein of the U5 snRNP. However, analogous splice-site selection studies in multicellular eukaryotes are lacking. Such studies are crucial for a comprehensive understanding of alternative splicing, which is extensive in plants and animals but limited in yeast. In this work, we describe an Arabidopsis (Arabidopsis thaliana) prp8a mutant that modulates splice-site selection. We isolated prp8a-14 from a screen for suppressors of pex14-6, which carries a splice-site mutation in the PEROXIN14 (PEX14) peroxisome biogenesis gene. To elucidate Arabidopsis PRP8A function in spliceosome fidelity, we combined prp8a-14 with various pex14 splice-site mutations and monitored the double mutants for physiological and molecular consequences of dysfunctional and functional peroxisomes that correspond to impaired and recovered splicing, respectively. prp8a-14 restored splicing and PEX14 function to alleles with mutations in the exonic guanine of the 5'-splice site but did not restore splicing or function to alleles with mutations in the intronic guanine of 5'- or 3'-splice sites. We used RNA-seq to reveal the systemic impact of prp8a-14 and found hundreds of differentially spliced transcripts and thousands of transcripts with significantly altered levels. Among differentially spliced transcripts, prp8a-14 significantly altered 5'- and 3'-splice-site utilization to favor sites resulting in shorter introns. This study provides a genetic platform for probing splicing in plants and hints at a role for plant PRP8 in splice-site selection.


Asunto(s)
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Alelos , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Guanina/metabolismo , Intrones/genética , Mutación/genética , ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
J Integr Plant Biol ; 61(7): 853-870, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30761735

RESUMEN

Peroxisomes rely on peroxins (PEX proteins) for biogenesis, importing membrane and matrix proteins, and fission. PEX16, which is implicated in peroxisomal membrane protein targeting and forming nascent peroxisomes from the endoplasmic reticulum (ER), is unusual among peroxins because it is inserted co-translationally into the ER and localizes to both ER and peroxisomal membranes. PEX16 mutations in humans, yeast, and plants confer some common peroxisomal defects; however, apparent functional differences have impeded the development of a unified model for PEX16 action. The only reported pex16 mutant in plants, the Arabidopsis shrunken seed1 mutant, is inviable, complicating analysis of PEX16 function after embryogenesis. Here, we characterized two viable Arabidopsis pex16 alleles that accumulate negligible PEX16 protein levels. Both mutants displayed impaired peroxisome function - slowed consumption of stored oil bodies, decreased import of matrix proteins, and increased peroxisome size. Moreover, one pex16 allele exhibited reduced growth that could be alleviated by an external fixed carbon source, decreased responsiveness to peroxisomally processed hormone precursors, and worsened or improved peroxisome function in combination with other pex mutants. Because the mutations impact different regions of the PEX16 gene, these viable pex16 alleles allow assessment of the importance of Arabidopsis PEX16 and its functional domains.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Peroxinas/metabolismo , Peroxisomas/metabolismo , Alelos , Proteínas de Arabidopsis/genética , Mutación/genética , Peroxinas/genética
3.
Plant Cell ; 25(10): 4085-100, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24179123

RESUMEN

Peroxisomes house critical metabolic reactions that are essential for seedling development. As seedlings mature, metabolic requirements change, and peroxisomal contents are remodeled. The resident peroxisomal protease LON2 is positioned to degrade obsolete or damaged peroxisomal proteins, but data supporting such a role in plants have remained elusive. Arabidopsis thaliana lon2 mutants display defects in peroxisomal metabolism and matrix protein import but appear to degrade matrix proteins normally. To elucidate LON2 functions, we executed a forward-genetic screen for lon2 suppressors, which revealed multiple mutations in key autophagy genes. Disabling core autophagy-related gene (ATG) products prevents autophagy, a process through which cytosolic constituents, including organelles, can be targeted for vacuolar degradation. We found that atg2, atg3, and atg7 mutations suppressed lon2 defects in auxin metabolism and matrix protein processing and rescued the abnormally large size and small number of lon2 peroxisomes. Moreover, analysis of lon2 atg mutants uncovered an apparent role for LON2 in matrix protein turnover. Our data suggest that LON2 facilitates matrix protein degradation during peroxisome content remodeling, provide evidence for the existence of pexophagy in plants, and indicate that peroxisome destruction via autophagy is enhanced when LON2 is absent.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Autofagia/genética , Peroxisomas/metabolismo , Proteolisis , Serina Proteasas/metabolismo , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Proteínas Relacionadas con la Autofagia , Ácidos Indolacéticos/metabolismo , Mutación , Serina Proteasas/genética
4.
Plant Physiol ; 166(3): 1329-44, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25214533

RESUMEN

Peroxisomal matrix proteins carry peroxisomal targeting signals (PTSs), PTS1 or PTS2, and are imported into the organelle with the assistance of peroxin (PEX) proteins. From a microscopy-based screen to identify Arabidopsis (Arabidopsis thaliana) mutants defective in matrix protein degradation, we isolated unique mutations in PEX2 and PEX10, which encode ubiquitin-protein ligases anchored in the peroxisomal membrane. In yeast (Saccharomyces cerevisiae), PEX2, PEX10, and a third ligase, PEX12, ubiquitinate a peroxisome matrix protein receptor, PEX5, allowing the PEX1 and PEX6 ATP-hydrolyzing enzymes to retrotranslocate PEX5 out of the membrane after cargo delivery. We found that the pex2-1 and pex10-2 Arabidopsis mutants exhibited defects in peroxisomal physiology and matrix protein import. Moreover, the pex2-1 pex10-2 double mutant exhibited severely impaired growth and synergistic physiological defects, suggesting that PEX2 and PEX10 function cooperatively in the wild type. The pex2-1 lesion restored the unusually low PEX5 levels in the pex6-1 mutant, implicating PEX2 in PEX5 degradation when retrotranslocation is impaired. PEX5 overexpression altered pex10-2 but not pex2-1 defects, suggesting that PEX10 facilitates PEX5 retrotranslocation from the peroxisomal membrane. Although the pex2-1 pex10-2 double mutant displayed severe import defects of both PTS1 and PTS2 proteins into peroxisomes, both pex2-1 and pex10-2 single mutants exhibited clear import defects of PTS1 proteins but apparently normal PTS2 import. A similar PTS1-specific pattern was observed in the pex4-1 ubiquitin-conjugating enzyme mutant. Our results indicate that Arabidopsis PEX2 and PEX10 cooperate to support import of matrix proteins into plant peroxisomes and suggest that some PTS2 import can still occur when PEX5 retrotranslocation is slowed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Malato Deshidrogenasa/metabolismo , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Mutación , Peroxinas , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/metabolismo , Plantas Modificadas Genéticamente , Estabilidad Proteica , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal
5.
Plant Mol Biol ; 86(1-2): 201-14, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25008153

RESUMEN

Peroxisomes are organelles that catabolize fatty acids and compartmentalize other oxidative metabolic processes in eukaryotes. Using a forward-genetic screen designed to recover severe peroxisome-defective mutants, we isolated a viable allele of the peroxisome biogenesis gene PEX13 with striking peroxisomal defects. The pex13-4 mutant requires an exogenous source of fixed carbon for pre-photosynthetic development and is resistant to the protoauxin indole-3-butyric acid. Delivery of peroxisome-targeted matrix proteins depends on the PEX5 receptor docking with PEX13 at the peroxisomal membrane, and we found severely reduced import of matrix proteins and less organelle-associated PEX5 in pex13-4 seedlings. Moreover, pex13-4 physiological and molecular defects were partially ameliorated when PEX5 was overexpressed, suggesting that PEX5 docking is partially compromised in this mutant and can be improved by increasing PEX5 levels. Because previously described Arabidopsis pex13 alleles either are lethal or confer only subtle defects, the pex13-4 mutant provides valuable insight into plant peroxisome receptor docking and matrix protein import.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Peroxisomas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/análisis , Datos de Secuencia Molecular , Mutación Missense , Peroxinas , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/ultraestructura , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Receptores Citoplasmáticos y Nucleares/análisis , Receptores Citoplasmáticos y Nucleares/genética , Alineación de Secuencia
6.
PLoS One ; 11(1): e0148335, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26824478

RESUMEN

Peroxisomes are single-membrane bound organelles that are essential for normal development in plants and animals. In mammals and yeast, the peroxin (PEX) proteins PEX3 and PEX19 facilitate the early steps of peroxisome membrane protein (PMP) insertion and pre-peroxisome budding from the endoplasmic reticulum. The PEX3 membrane protein acts as a docking site for PEX19, a cytosolic chaperone for PMPs that delivers PMPs to the endoplasmic reticulum or peroxisomal membrane. PEX19 is farnesylated in yeast and mammals, and we used immunoblotting with prenylation mutants to show that PEX19 also is fully farnesylated in wild-type Arabidopsis thaliana plants. We examined insertional alleles disrupting either of the two Arabidopsis PEX19 isoforms, PEX19A or PEX19B, and detected similar levels of PEX19 protein in the pex19a-1 mutant and wild type; however, PEX19 protein was nearly undetectable in the pex19b-1 mutant. Despite the reduction in PEX19 levels in pex19b-1, both pex19a-1 and pex19b-1 single mutants lacked notable peroxisomal ß-oxidation defects and displayed normal levels and localization of peroxisomal matrix and membrane proteins. The pex19a-1 pex19b-1 double mutant was embryo lethal, indicating a redundantly encoded critical role for PEX19 during embryogenesis. Expressing YFP-tagged versions of either PEX19 isoform rescued this lethality, confirming that PEX19A and PEX19B act redundantly in Arabidopsis. We observed that pex19b-1 enhanced peroxisome-related defects of a subset of peroxin-defective mutants, supporting a role for PEX19 in peroxisome function. Together, our data indicate that Arabidopsis PEX19 promotes peroxisome function and is essential for viability.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de la Membrana/genética , Peroxisomas/metabolismo , Procesamiento Proteico-Postraduccional , Semillas/genética , Secuencia de Aminoácidos , Arabidopsis/clasificación , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Retículo Endoplásmico/metabolismo , Genes Letales , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Peroxinas , Filogenia , Técnicas de Embriogénesis Somática de Plantas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Prenilación de Proteína , Semillas/metabolismo , Alineación de Secuencia
7.
Autophagy ; 10(3): 518-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24413187

RESUMEN

Peroxisomes are critical organelles housing various, often oxidative, reactions. Pexophagy, the process by which peroxisomes are selectively targeted for destruction via autophagy, is characterized in yeast and mammals but had not been reported in plants. In this article, we describe how the peroxisome-related aberrations of a mutant defective in the LON2 peroxisomal protease are suppressed when autophagy is prevented by mutating any of several key autophagy-related (ATG) genes. Our results reveal that plant peroxisomes can be degraded by selective autophagy and suggest that pexophagy is accelerated when the LON2 protease is disabled.


Asunto(s)
Proteasas ATP-Dependientes/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Autofagia/fisiología , Mutación/genética , Peroxisomas/genética , Autofagia/genética
8.
Genetics ; 193(1): 125-41, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23150599

RESUMEN

Peroxisomes are organelles that sequester certain metabolic pathways; many of these pathways generate H(2)O(2), which can damage proteins. However, little is known about how damaged or obsolete peroxisomal proteins are degraded. We exploit developmentally timed peroxisomal content remodeling in Arabidopsis thaliana to elucidate peroxisome-associated protein degradation. Isocitrate lyase (ICL) is a peroxisomal glyoxylate cycle enzyme necessary for early seedling development. A few days after germination, photosynthesis begins and ICL is degraded. We previously found that ICL is stabilized when a peroxisome-associated ubiquitin-conjugating enzyme and its membrane anchor are both mutated, suggesting that matrix proteins might exit the peroxisome for ubiquitin-dependent cytosolic degradation. To identify additional components needed for peroxisome-associated matrix protein degradation, we mutagenized a line expressing GFP-ICL, which is degraded similarly to endogenous ICL, and identified persistent GFP-ICL fluorescence (pfl) mutants. We found three pfl mutants that were defective in PEROXIN14 (PEX14/At5g62810), which encodes a peroxisomal membrane protein that assists in importing proteins into the peroxisome matrix, indicating that proteins must enter the peroxisome for efficient degradation. One pfl mutant was missing the peroxisomal 3-ketoacyl-CoA thiolase encoded by the PEROXISOME DEFECTIVE1 (PED1/At2g33150) gene, suggesting that peroxisomal metabolism influences the rate of matrix protein degradation. Finally, one pfl mutant that displayed normal matrix protein import carried a novel lesion in PEROXIN6 (PEX6/At1g03000), which encodes a peroxisome-tethered ATPase that is involved in recycling matrix protein receptors back to the cytosol. The isolation of pex6-2 as a pfl mutant supports the hypothesis that matrix proteins can exit the peroxisome for cytosolic degradation.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Peroxisomas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA