Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Cell ; 58(1): 110-22, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25773595

RESUMEN

N-myristoylation is an essential fatty acid modification that governs the localization and activity of cell signaling enzymes, architectural proteins, and immune regulatory factors. Despite its importance in health and disease, there are currently no methods for reversing protein myristoylation in vivo. Recently, the Shigella flexneri protease IpaJ was found to cleave myristoylated glycine of eukaryotic proteins, yet the discriminatory mechanisms of substrate selection required for targeted demyristoylation have not yet been evaluated. Here, we performed global myristoylome profiling of cells treated with IpaJ under distinct physiological conditions. The protease is highly promiscuous among diverse N-myristoylated proteins in vitro but is remarkably specific to Golgi-associated ARF/ARL family GTPases during Shigella infection. Reconstitution studies revealed a mechanistic framework for substrate discrimination based on IpaJ's function as a GTPase "effector" of bacterial origin. We now propose a concerted model for IpaJ function that highlights its potential for programmable demyristoylation in vivo.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Antígenos Bacterianos/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Shigella flexneri/química , Factor 1 de Ribosilacion-ADP/química , Factor 1 de Ribosilacion-ADP/genética , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/química , Factores de Ribosilacion-ADP/genética , Secuencia de Aminoácidos , Antígenos Bacterianos/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Ácido Mirístico/química , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Shigella flexneri/enzimología , Transducción de Señal
2.
PLoS Genet ; 13(3): e1006695, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28355222

RESUMEN

Mitochondrial dysfunction can increase oxidative stress and extend lifespan in Caenorhabditis elegans. Homeostatic mechanisms exist to cope with disruptions to mitochondrial function that promote cellular health and organismal longevity. Previously, we determined that decreased expression of the cytosolic pentose phosphate pathway (PPP) enzyme transaldolase activates the mitochondrial unfolded protein response (UPRmt) and extends lifespan. Here we report that transaldolase (tald-1) deficiency impairs mitochondrial function in vivo, as evidenced by altered mitochondrial morphology, decreased respiration, and increased cellular H2O2 levels. Lifespan extension from knockdown of tald-1 is associated with an oxidative stress response involving p38 and c-Jun N-terminal kinase (JNK) MAPKs and a starvation-like response regulated by the transcription factor EB (TFEB) homolog HLH-30. The latter response promotes autophagy and increases expression of the flavin-containing monooxygenase 2 (fmo-2). We conclude that cytosolic redox established through the PPP is a key regulator of mitochondrial function and defines a new mechanism for mitochondrial regulation of longevity.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Longevidad/genética , Oxigenasas/genética , Transaldolasa/genética , Envejecimiento/genética , Envejecimiento/patología , Animales , Autofagia/genética , Caenorhabditis elegans/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Peróxido de Hidrógeno/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/biosíntesis , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Mitocondrias/genética , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Oxigenasas/biosíntesis , Inanición , Transaldolasa/antagonistas & inhibidores , Respuesta de Proteína Desplegada/genética , Proteínas Quinasas p38 Activadas por Mitógenos/biosíntesis , Proteínas Quinasas p38 Activadas por Mitógenos/genética
3.
Nature ; 496(7443): 106-9, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23535599

RESUMEN

Protein N-myristoylation is a 14-carbon fatty-acid modification that is conserved across eukaryotic species and occurs on nearly 1% of the cellular proteome. The ability of the myristoyl group to facilitate dynamic protein-protein and protein-membrane interactions (known as the myristoyl switch) makes it an essential feature of many signal transduction systems. Thus pathogenic strategies that facilitate protein demyristoylation would markedly alter the signalling landscape of infected host cells. Here we describe an irreversible mechanism of protein demyristoylation catalysed by invasion plasmid antigen J (IpaJ), a previously uncharacterized Shigella flexneri type III effector protein with cysteine protease activity. A yeast genetic screen for IpaJ substrates identified ADP-ribosylation factor (ARF)1p and ARF2p, small molecular mass GTPases that regulate cargo transport through the Golgi apparatus. Mass spectrometry showed that IpaJ cleaved the peptide bond between N-myristoylated glycine-2 and asparagine-3 of human ARF1, thereby providing a new mechanism for host secretory inhibition by a bacterial pathogen. We further demonstrate that IpaJ cleaves an array of N-myristoylated proteins involved in cellular growth, signal transduction, autophagasome maturation and organelle function. Taken together, these findings show a previously unrecognized pathogenic mechanism for the site-specific elimination of N-myristoyl protein modification.


Asunto(s)
Antígenos Bacterianos/metabolismo , Ácido Mirístico/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Shigella flexneri/metabolismo , Factores de Virulencia/metabolismo , Factor 1 de Ribosilacion-ADP/química , Factor 1 de Ribosilacion-ADP/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Secuencia de Aminoácidos , Animales , Asparagina/metabolismo , Autofagia , Biocatálisis , Proteasas de Cisteína/metabolismo , Disentería Bacilar , Femenino , Glicina/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Células HEK293 , Células HeLa , Humanos , Listeria monocytogenes/fisiología , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fagosomas/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Shigella flexneri/enzimología , Transducción de Señal , Especificidad por Sustrato , Virulencia
4.
J Immunol ; 188(2): 800-10, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22147768

RESUMEN

Foxp3(+) regulatory T (Treg) cells are a critical cell population that suppresses T cell activation in response to microbial and viral pathogens. We identify a cell-intrinsic mechanism by which effector CD4(+) T cells overcome the suppressive effects of Treg cells in the context of three distinct infections: Toxoplasma gondii, Listeria monocytogenes, and vaccinia virus. The acute responses to the parasitic, bacterial, and viral pathogens resulted in a transient reduction in frequency and absolute number of Treg cells. The infection-induced partial loss of Treg cells was essential for the initiation of potent Th1 responses and host protection against the pathogens. The observed disappearance of Treg cells was a result of insufficiency in IL-2 caused by the expansion of pathogen-specific CD4(+) T cells with a limited capacity of IL-2 production. Exogenous IL-2 treatment during the parasitic, bacterial, and viral infections completely prevented the loss of Treg cells, but restoration of Treg cells resulted in a greatly enhanced susceptibility to the pathogens. These results demonstrate that the transient reduction in Treg cells induced by pathogens via IL-2 deprivation is essential for optimal T cell responses and host resistance to microbial and viral pathogens.


Asunto(s)
Interleucina-2/deficiencia , Listeriosis/inmunología , Activación de Linfocitos/inmunología , Linfopenia/inmunología , Linfocitos T Reguladores/inmunología , Toxoplasmosis Animal/inmunología , Vaccinia/inmunología , Enfermedad Aguda , Animales , Recuento de Linfocito CD4 , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Epítopos de Linfocito T/inmunología , Interleucina-2/biosíntesis , Interleucina-2/fisiología , Listeriosis/microbiología , Listeriosis/patología , Linfopenia/patología , Linfopenia/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/patología , Células TH1/inmunología , Células TH1/metabolismo , Células TH1/patología , Toxoplasmosis Animal/parasitología , Toxoplasmosis Animal/patología , Vaccinia/patología , Vaccinia/virología
5.
Geroscience ; 45(2): 1115-1130, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36562924

RESUMEN

Slowing aging can reduce the risk of chronic diseases. In particular, eliminating senescent cells is a promising approach to slow aging. Previous studies found that both cells from older animals and senescent cells have noisy gene expression. Here, we performed a large-scale single-cell RNA-sequencing time course to understand how transcriptional heterogeneity develops among senescent cells. We found that cells experiencing senescence-inducing oxidative stress rapidly adopt one of two major transcriptional states. One senescent cell state is associated with stress response, and the other is associated with tissue remodeling. We did not observe increased stochastic gene expression. This data is consistent with the idea that reproducible, limited, distinct, and coherent transcriptional states exist in senescent cell populations. These physiologically distinct senescent cell subtypes may each affect the aging process in unique ways and constitute a source of heterogeneity in aging.


Asunto(s)
Envejecimiento , Senescencia Celular , Animales , Senescencia Celular/genética , Envejecimiento/fisiología , Estrés Oxidativo
6.
J Gerontol A Biol Sci Med Sci ; 75(12): 2295-2298, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31957802

RESUMEN

Cell-to-cell variation in gene expression increases among homologous cells within multiple tissues during aging. We call this phenomenon variegated gene expression (VGE). Long, healthy life requires robust and coordinated gene expression. We posit that nature may have evolved VGE as a bet-hedging mechanism to protect reproductively active populations. The price we may pay is accelerated aging. That hypothesis will require the demonstration that genetic loci are capable of modulating degrees of VGE. While loci controlling VGE in yeast and genes controlling interindividual variation in gene expression in Caenorhabditis elegans have been identified, there has been no compelling evidence for the role of specific genetic loci in modulations of VGE of specific targets in humans. With the assistance of a core facility, we used a customized library of siRNA constructs to screen 1,195 human genes to identify loci contributing to the control of VGE of a gene with relevance to the biology of aging. We identified approximately 50 loci controlling VGE of the prolongevity gene, SIRT1. Because of its partial homology to FOXO3A, a variant of which is enriched in centenarians, our laboratory independently confirmed that the knockdown of FOXF2 greatly diminished VGE of SIRT1 but had little impact upon the VGE of WRN. While the role of these VGE-altering genes on aging in vivo remains to be determined, we hypothesize that some of these genes can be targeted to increase functionality during aging.


Asunto(s)
Envejecimiento/genética , Factores de Transcripción Forkhead/genética , Expresión Génica/fisiología , Sirtuina 1/genética , Línea Celular , Células Cultivadas , Epigénesis Genética , Biblioteca de Genes , Humanos , ARN Interferente Pequeño/genética
7.
J Gerontol A Biol Sci Med Sci ; 74(8): 1173-1179, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29165668

RESUMEN

The function of the pharynx, an organ in the model system Caenorhabditis elegans, has been correlated with life span and motility (another measure of health) since 1980. In this study, in order to further understand the relationship between organ function and life span, we measured the age-related decline of the pharynx using an electrophysiological approach. We measured and analyzed electropharyngeograms (EPG) of wild type animals, short-lived hsf-1 mutants, and long-lived animals with genetically decreased insulin signaling or increased heat shock pathway signaling; we recorded a total of 2,478 EPGs from 1,374 individuals. As expected, the long-lived daf-2(e1370) and hsf-1OE(uthIs235) animals maintained pharynx function relatively closer to the youthful state during aging, whereas the hsf-1(sy441) and wild type animals' pharynx function deviated significantly further from the youthful state at advanced age. Measures of the amount of variation in organ function can act as biomarkers of youthful physiology as well. Intriguingly, the long-lived animals had greater variation in the duration of pharynx contraction at older ages.


Asunto(s)
Envejecimiento/fisiología , Caenorhabditis elegans/fisiología , Longevidad/fisiología , Faringe/fisiología , Animales , Caenorhabditis elegans/genética , Fenómenos Electrofisiológicos , Transducción de Señal
8.
Nat Commun ; 10(1): 5725, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31844058

RESUMEN

Many traits vary among isogenic individuals in homogeneous environments. In microbes, plants and animals, variation in the protein chaperone system affects many such traits. In the animal model C. elegans, the expression level of hsp-16.2 chaperone biomarkers correlates with or predicts the penetrance of mutations and lifespan after heat shock. But the physiological mechanisms causing cells to express different amounts of the biomarker were unknown. Here, we used an in vivo microscopy approach to dissect different contributions to cell-to-cell variation in hsp-16.2 expression in the intestines of young adult animals, which generate the most lifespan predicting signal. While we detected both cell autonomous intrinsic noise and signaling noise, we found both contributions were relatively unimportant. The major contributor to cell-to-cell variation in biomarker expression was general differences in protein dosage. The hsp-16.2 biomarker reveals states of high or low effective dosage for many genes.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Dosificación de Gen , Proteínas de Choque Térmico/genética , Longevidad/genética , Penetrancia , Animales , Animales Modificados Genéticamente , Biomarcadores/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Genes Reporteros/genética , Proteínas de Choque Térmico/metabolismo , Microscopía Intravital/métodos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Modelos Animales , Imagen Molecular , Transducción de Señal/genética
9.
Elife ; 72018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30070633

RESUMEN

The mechanisms underlying biological aging are becoming recognized as therapeutic targets to delay the onset of multiple age-related morbidities. Even greater health benefits can potentially be achieved by halting or reversing age-associated changes. C. elegans restore their tissues and normal longevity upon exit from prolonged adult reproductive diapause, but the mechanisms underlying this phenomenon remain unknown. Here, we focused on the mechanisms controlling recovery from adult diapause. Here, we show that functional improvement of post-mitotic somatic tissues does not require germline signaling, germline stem cells, or replication of nuclear or mitochondrial DNA. Instead a large expansion of the somatic RNA pool is necessary for restoration of youthful function and longevity. Treating animals with the drug 5-fluoro-2'-deoxyuridine prevents this restoration by blocking reactivation of RNA metabolism. These observations define a critical early step during exit from adult reproductive diapause that is required for somatic rejuvenation of an adult metazoan animal.


Asunto(s)
Diapausa/genética , Longevidad/genética , ARN/genética , Reproducción/genética , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , Desoxiuridina/administración & dosificación , Desoxiuridina/análogos & derivados , Células Germinativas/efectos de los fármacos , Células Germinativas/crecimiento & desarrollo , Longevidad/efectos de los fármacos , ARN/efectos de los fármacos , Reproducción/efectos de los fármacos , Células Madre/efectos de los fármacos
10.
Transl Med Aging ; 2: 1-10, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33693300

RESUMEN

One way scientists can observe and quantify processes in living cells is to engineer the genomes of animals to express multiple fluorescent proteins and then quantify those signals by various imaging techniques. To allow our laboratories to confidently quantify mixed (overlapping) fluorescent signals for our studies in the basic biology of gene expression and aging in C. elegans, we developed a comprehensive toolkit for C. elegans that we describe here. The Toolkit consists of two components: 1) a series of vectors for DNA assembly by homologous recombination (HR) in the yeast, Saccharomyces cerevisiae, and 2) a set of ten worm strains that each express a single, spectrally distinct fluorescent protein, under control of either the daf21 or eft-3 promoters. We measured the in vivo emission spectrum (3nm resolution) for each fluorescent protein in live C. elegans and showed that we can use those pure spectra to unmix overlapping fluorescent signals in spectral images of intestine cells. Seven of ten fluorescent proteins had signals that appeared to be localized in vesicular/elliptical foci or tubules in the hypodermis. We conducted fluorescence recovery after photobleaching (FRAP) experiments and showed that these structures have recovery kinetics more consistent with freely diffusing protein than aggregates (Q35::YFP). This toolkit will allow researchers to quickly and efficiently generate mutlti-fragment DNA assemblies for genome editing in C. elegans. Additionally, the transgenic C. elegans and the measured emission spectra should serve as a resource for scientists seeking to perform, or test their ability to perform, multidimensional (multi-color) imaging experiments.

11.
Cell Host Microbe ; 18(2): 157-68, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26235147

RESUMEN

STING is an ER-associated membrane protein that is critical for innate immune sensing of pathogens. STING-mediated activation of the IFN-I pathway through the TBK1/IRF3 signaling axis involves both cyclic-dinucleotide binding and its translocation from the ER to vesicles. However, how these events are coordinated, and the exact mechanism of STING activation, remain poorly understood. Here, we found that the Shigella effector protein IpaJ potently inhibits STING signaling by blocking its translocation from the ER to ERGIC, even in the context of dinucleotide binding. Reconstitution using purified components revealed STING translocation as the rate-limiting event in maximal signal transduction. Furthermore, STING mutations associated with autoimmunity in humans were found to cause constitutive ER exit and to activate STING independent of cGAMP binding. Together, these data provide compelling evidence for an ER retention and ERGIC/Golgi-trafficking mechanism of STING regulation that is subverted by bacterial pathogens and is deregulated in human genetic disease.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Shigella/inmunología , Shigella/fisiología , Activación Transcripcional , Animales , Línea Celular , Interferón Tipo I/biosíntesis , Ratones , Transporte de Proteínas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA