Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Can J Physiol Pharmacol ; 90(5): 579-85, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22471992

RESUMEN

Our "reservoir-wave approach" to arterial hemodynamics holds that measured arterial pressure should be considered to be the sum of a volume-related pressure (i.e., reservoir pressure, P(reservoir)) and a wave-related pressure (P(excess)). Because some have questioned whether P(reservoir) (and, by extension, P(excess)) is a real component of measured physiological pressure, it was important to demonstrate that P(reservoir) is implicit in Westerhof's classical electrical and hydraulic models of the 3-element Windkessel. To test the validity of our P(reservoir) determinations, we studied a freeware simulation of the electrical model and a benchtop recreation of the hydraulic model, respectively, measuring the voltage and the pressure distal to the proximal resistance. These measurements were then compared with P(reservoir), as calculated from physiological data. Thus, the first objective of this study was to demonstrate that respective voltage and pressure changes could be measured that were similar to calculated physiological values of P(reservoir). The second objective was to confirm previous predictions with respect to the specific effects of systematically altering proximal resistance, distal resistance, and capacitance. The results of this study validate P(reservoir) and, thus, the reservoir-wave approach.


Asunto(s)
Arterias/fisiología , Presión Sanguínea/fisiología , Hemodinámica/fisiología , Modelos Cardiovasculares
3.
CJC Open ; 1(2): 84-92, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32159088

RESUMEN

BACKGROUND: The purpose of this article is to examine the systemic circulation and left ventricular (LV) performance by alternative, nonconventional approaches: systemic vascular conductance (G SV ) and the head-capacity relation (ie, the relation between LV pressure and cardiac output), respectively; in so doing, we aspired to present a novel and improved interpretation of integrated cardiovascular function. METHODS: In 16 open-chest, anaesthetized pigs, we measured LV pressure (P LV ), central aortic pressure (P Ao ), and central venous pressure (P CV ) and aortic flow (Q Ao ). We calculated heart rate (HR), stroke volume, cardiac index (CI = cardiac output/body weight), mean PLV ( P ¯ LV ) , and the average arteriovenous pressure difference ( Δ P = P ¯ Ao - P ¯ CV ); G SV  = CI/( P ¯ Ao - P ¯ CV ). We studied the effects of changing loading conditions with the administration of phenylephrine (Δ P ¯ Ao ≥ +25 mm Hg), isoproterenol (ΔHR ∼+25%), sodium nitroprusside (Δ P ¯ Ao ≥ -25 mm Hg), and proximal aortic constriction (to maximize developed P LV and minimize Q Ao ). RESULTS: Sodium nitroprusside and isoproterenol increased G SV compared with phenylephrine and constriction. A maximum head-capacity curve was derived from pooled data using nonlinear regression on the maximum P ¯ LV values in Q Ao bins 12.5 mL/min/kg wide. The head-capacity relation and the plots of conductance were combined using CI as a common axis, which illustrated that CI is the output of the heart and the input of the circulation. CONCLUSIONS: Thus, at a given CI, G SV determines the driving pressure and, thereby, P Ao . We also demonstrated how decreases in G SV compensate for arterial hypotension by restoring the arteriovenous pressure difference and arterial pressure.


CONTEXTE: Le présent article examine l'efficacité de la circulation générale et la fonction ventriculaire gauche à l'aide de paramètres de rechange non conventionnels, soit la conductance vasculaire systémique (G VS ) pour l'une et la relation pression-volume (c.-à-d. la relation entre la pression ventriculaire gauche et le débit cardiaque) pour l'autre, dans le but de présenter une interprétation nouvelle et améliorée de la fonction cardiovasculaire intégrée. MÉTHODOLOGIE: Chez 16 porcs anesthésiés, nous avons mesuré à thorax ouvert la pression ventriculaire gauche (P VG ), la pression aortique centrale (P AC ), la pression veineuse centrale (P VC ) et le flux aortique (Q A ). Nous avons établi la fréquence cardiaque (FC), le volume d'éjection systolique, l'index cardiaque (IC; rapport entre le débit cardiaque et le poids corporel), la P VG moyenne ( P ¯ VG ) et la différence de pression artérioveineuse moyenne ( Δ P = P ¯ A C − P ¯ V C ); G VS  = IC/( P ¯ AC − P ¯ VC ). Nous avons aussi étudié les effets d'une modification des conditions de charge cardiaque provoquée par l'administration de phényléphrine (Δ P ¯ AC ≥ + 25 mmHg), d'isoprotérénol (ΔFC d'environ + 25 %) ou de nitroprussiate de sodium (Δ P ¯ AC ≥ − 25 mmHg) et par la constriction de l'aorte proximale (pour maximiser la P VG développée et réduire le plus possible le Q A ). RÉSULTATS: Le nitroprussiate de sodium et l'isoprotérénol ont augmenté la G VS comparativement à la phényléphrine et à la constriction. Une courbe de la relation pression-volume maximale a été dérivée à partir des données groupées, au moyen d'une régression non linéaire sur les valeurs maximales de la P ¯ VG réparties dans des classes de Q A de 12,5 ml/min/kg d'amplitude. La courbe de la relation pression-volume et le tracé de la conductance ont été superposés en utilisant l'IC comme axe commun, ce qui a permis de constater que l'IC correspond au débit cardiaque et au volume entrant dans la circulation. CONCLUSIONS: Pour un IC donné, la G VS détermine la pression motrice et donc, la P AC . Nous avons aussi démontré comment une diminution de la G VS compense l'hypotension artérielle en rétablissant la différence de pression artérioveineuse et la pression artérielle.

4.
J Appl Physiol (1985) ; 121(6): 1348-1353, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27765845

RESUMEN

Using the reservoir-wave approach (RWA) we previously characterized pulmonary vasculature mechanics in a normal canine model. We found reflected backward-traveling waves that decrease pressure and increase flow in the proximal pulmonary artery (PA). These waves decrease right ventricular (RV) afterload and facilitate RV ejection. With pathological alterations to the pulmonary vasculature, these waves may change and impact RV performance. Our objective in this study was to characterize PA wave reflection and the alterations in RV performance in cardiac patients, using the RWA. PA pressure, Doppler-flow velocity, and pulmonary arterial wedge pressure were measured in 11 patients with exertional dyspnea. The RWA was employed to analyze PA pressure and flow; wave intensity analysis characterized PA waves. Wave-related pressure was partitioned into two components: pressures due to forward-traveling and to backward-traveling waves. RV performance was assessed by examining the work done in raising reservoir pressure and that associated with the wave components of systolic PA pressure. Wave-related work, the mostly nonrecoverable energy expended by the RV to eject blood, tended to vary directly with mean PA pressure. Where PA pressures were lower, there were pressure-decreasing/flow-increasing backward waves that aided RV ejection. Where PA pressures were higher, there were pressure-increasing/flow-decreasing backward waves that impeded RV ejection. Pressure-increasing/flow-decreasing backward waves were responsible for systolic notches in the Doppler flow velocity profiles in patients with the highest PA pressure. Pulmonary hypertension is characterized by reflected waves that impede RV ejection and an increase in wave-related work. The RWA may facilitate the development of therapeutic strategies.


Asunto(s)
Ventrículos Cardíacos/fisiopatología , Presión Esfenoidal Pulmonar/fisiología , Función Ventricular Derecha/fisiología , Anciano , Anciano de 80 o más Años , Animales , Velocidad del Flujo Sanguíneo/fisiología , Presión Sanguínea/fisiología , Ecocardiografía Doppler/métodos , Femenino , Humanos , Hipertensión Pulmonar/fisiopatología , Masculino , Arteria Pulmonar/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA