RESUMEN
Splicing of pre-mRNAs critically contributes to gene regulation and proteome expansion in eukaryotes, but our understanding of the recognition and pairing of splice sites during spliceosome assembly lacks detail. Here, we identify the multidomain RNA-binding protein FUBP1 as a key splicing factor that binds to a hitherto unknown cis-regulatory motif. By collecting NMR, structural, and in vivo interaction data, we demonstrate that FUBP1 stabilizes U2AF2 and SF1, key components at the 3' splice site, through multivalent binding interfaces located within its disordered regions. Transcriptional profiling and kinetic modeling reveal that FUBP1 is required for efficient splicing of long introns, which is impaired in cancer patients harboring FUBP1 mutations. Notably, FUBP1 interacts with numerous U1 snRNP-associated proteins, suggesting a unique role for FUBP1 in splice site bridging for long introns. We propose a compelling model for 3' splice site recognition of long introns, which represent 80% of all human introns.
Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN , Humanos , Sitios de Empalme de ARN/genética , Intrones/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismoRESUMEN
N6-methyladenosine (m6 A) regulates a variety of physiological processes through modulation of RNA metabolism. This modification is particularly enriched in the nervous system of several species, and its dysregulation has been associated with neurodevelopmental defects and neural dysfunctions. In Drosophila, loss of m6 A alters fly behavior, albeit the underlying molecular mechanism and the role of m6 A during nervous system development have remained elusive. Here we find that impairment of the m6 A pathway leads to axonal overgrowth and misguidance at larval neuromuscular junctions as well as in the adult mushroom bodies. We identify Ythdf as the main m6 A reader in the nervous system, being required to limit axonal growth. Mechanistically, we show that the m6 A reader Ythdf directly interacts with Fmr1, the fly homolog of Fragile X mental retardation RNA binding protein (FMRP), to inhibit the translation of key transcripts involved in axonal growth regulation. Altogether, this study demonstrates that the m6 A pathway controls development of the nervous system and modulates Fmr1 target transcript selection.
Asunto(s)
Adenosina/análogos & derivados , Axones/fisiología , Proteínas de Drosophila/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neuronas/citología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Neuronas/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/genéticaRESUMEN
The RNA-binding protein PURA has been implicated in the rare, monogenetic, neurodevelopmental disorder PURA Syndrome. PURA binds both DNA and RNA and has been associated with various cellular functions. Only little is known about its main cellular roles and the molecular pathways affected upon PURA depletion. Here, we show that PURA is predominantly located in the cytoplasm, where it binds to thousands of mRNAs. Many of these transcripts change abundance in response to PURA depletion. The encoded proteins suggest a role for PURA in immune responses, mitochondrial function, autophagy and processing (P)-body activity. Intriguingly, reduced PURA levels decrease the expression of the integral P-body components LSM14A and DDX6 and strongly affect P-body formation in human cells. Furthermore, PURA knockdown results in stabilization of P-body-enriched transcripts, whereas other mRNAs are not affected. Hence, reduced PURA levels, as reported in patients with PURA Syndrome, influence the formation and composition of this phase-separated RNA processing machinery. Our study proposes PURA Syndrome as a new model to study the tight connection between P-body-associated RNA regulation and neurodevelopmental disorders.
Asunto(s)
Proteínas de Unión al ARN , Factores de Transcripción , Humanos , Proteínas de Unión al ADN/genética , Epilepsia , Cuerpos de Procesamiento , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismoRESUMEN
Cancer cells achieve immortality by employing either homology-directed repair (HDR) or the telomerase enzyme to maintain telomeres. ALT (alternative lengthening of telomeres) refers to the subset of cancer cells that employ HDR. Many ALT features are conserved from yeast to human cells, with the yeast equivalent being referred to as survivors. The non-coding RNA TERRA, and its ability to form RNA-DNA hybrids, has been implicated in ALT/survivor maintenance by promoting HDR. It is not understood which telomeres in ALT/survivors engage in HDR, nor is it clear which telomeres upregulate TERRA. Using yeast survivors as a model for ALT, we demonstrate that HDR only occurs at telomeres when they become critically short. Moreover, TERRA levels steadily increase as telomeres shorten and decrease again following HDR-mediated recombination. We observe that survivors undergo cycles of senescence, in a similar manner to non-survivors following telomerase loss, which we refer to as survivor associated senescence (SAS). Similar to 'normal' senescence, we report that RNA-DNA hybrids slow the rate of SAS, likely through the elongation of critically short telomeres, however decreasing the rate of telomere shortening may contribute to this effect. In summary, TERRA RNA-DNA hybrids regulate telomere dysfunction-induced senescence before and after survivor formation.
Asunto(s)
ARN Largo no Codificante , Saccharomyces cerevisiae , Telomerasa , Acortamiento del Telómero , Humanos , ARN Largo no Codificante/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismoRESUMEN
N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based approach to map m6A sites with single-nucleotide resolution. However, due to broad antibody reactivity, reliable identification of m6A sites from miCLIP data remains challenging. Here, we present miCLIP2 in combination with machine learning to significantly improve m6A detection. The optimized miCLIP2 results in high-complexity libraries from less input material. Importantly, we established a robust computational pipeline to tackle the inherent issue of false positives in antibody-based m6A detection. The analyses were calibrated with Mettl3 knockout cells to learn the characteristics of m6A deposition, including m6A sites outside of DRACH motifs. To make our results universally applicable, we trained a machine learning model, m6Aboost, based on the experimental and RNA sequence features. Importantly, m6Aboost allows prediction of genuine m6A sites in miCLIP2 data without filtering for DRACH motifs or the need for Mettl3 depletion. Using m6Aboost, we identify thousands of high-confidence m6A sites in different murine and human cell lines, which provide a rich resource for future analysis. Collectively, our combined experimental and computational methodology greatly improves m6A identification.
Asunto(s)
Adenosina/análogos & derivados , Aprendizaje Automático , Procesamiento Postranscripcional del ARN , RNA-Seq/métodos , Adenosina/química , Adenosina/metabolismo , Animales , Células HEK293 , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Motivos de Nucleótidos , ARN Mensajero/química , ARN Mensajero/metabolismo , RNA-Seq/normas , Sensibilidad y EspecificidadRESUMEN
Makorins are evolutionary conserved proteins that contain C3H-type zinc finger modules and a RING E3 ubiquitin ligase domain. In Drosophila, maternal Makorin 1 (Mkrn1) has been linked to embryonic patterning but the mechanism remained unsolved. Here, we show that Mkrn1 is essential for axis specification and pole plasm assembly by translational activation of oskar (osk). We demonstrate that Mkrn1 interacts with poly(A) binding protein (pAbp) and binds specifically to osk 3' UTR in a region adjacent to A-rich sequences. Using Drosophila S2R+ cultured cells we show that this binding site overlaps with a Bruno1 (Bru1) responsive element (BREs) that regulates osk translation. We observe increased association of the translational repressor Bru1 with osk mRNA upon depletion of Mkrn1, indicating that both proteins compete for osk binding. Consistently, reducing Bru1 dosage partially rescues viability and Osk protein level in ovaries from Mkrn1 females. We conclude that Mkrn1 controls embryonic patterning and germ cell formation by specifically activating osk translation, most likely by competing with Bru1 to bind to osk 3' UTR.
Asunto(s)
Tipificación del Cuerpo , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 3' , Animales , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ovario/metabolismo , Unión ProteicaRESUMEN
The recognition of cis-regulatory RNA motifs in human transcripts by RNA binding proteins (RBPs) is essential for gene regulation. The molecular features that determine RBP specificity are often poorly understood. Here, we combined NMR structural biology with high-throughput iCLIP approaches to identify a regulatory mechanism for U2AF2 RNA recognition. We found that the intrinsically disordered linker region connecting the two RNA recognition motif (RRM) domains of U2AF2 mediates autoinhibitory intramolecular interactions to reduce nonproductive binding to weak Py-tract RNAs. This proofreading favors binding of U2AF2 at stronger Py-tracts, as required to define 3' splice sites at early stages of spliceosome assembly. Mutations that impair the linker autoinhibition enhance the affinity for weak Py-tracts result in promiscuous binding of U2AF2 along mRNAs and impact on splicing fidelity. Our findings highlight an important role of intrinsically disordered linkers to modulate RNA interactions of multidomain RBPs.
Asunto(s)
ARN/metabolismo , Factor de Empalme U2AF/metabolismo , Animales , Bovinos , Inmunoprecipitación de Cromatina/métodos , Humanos , Espectroscopía de Resonancia Magnética , Ratones , Motivo de Reconocimiento de ARN , Ribonucleósido Difosfato Reductasa/metabolismoRESUMEN
Alternative splicing generates distinct mRNA isoforms and is crucial for proteome diversity in eukaryotes. The RNA-binding protein (RBP) U2AF2 is central to splicing decisions, as it recognizes 3' splice sites and recruits the spliceosome. We establish "in vitro iCLIP" experiments, in which recombinant RBPs are incubated with long transcripts, to study how U2AF2 recognizes RNA sequences and how this is modulated by trans-acting RBPs. We measure U2AF2 affinities at hundreds of binding sites and compare in vitro and in vivo binding landscapes by mathematical modeling. We find that trans-acting RBPs extensively regulate U2AF2 binding in vivo, including enhanced recruitment to 3' splice sites and clearance of introns. Using machine learning, we identify and experimentally validate novel trans-acting RBPs (including FUBP1, CELF6, and PCBP1) that modulate U2AF2 binding and affect splicing outcomes. Our study offers a blueprint for the high-throughput characterization of in vitro mRNP assembly and in vivo splicing regulation.
Asunto(s)
Sitios de Empalme de ARN/genética , Empalme del ARN , Empalmosomas/genética , Factor de Empalme U2AF/genética , Sitios de Unión/genética , Células HeLa , Humanos , Intrones/genética , Modelos Genéticos , Precursores del ARN/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalmosomas/metabolismo , Factor de Empalme U2AF/metabolismoRESUMEN
RNA-binding proteins (RBPs) determine spatiotemporal gene expression by mediating active transport and local translation of cargo mRNAs. Here, we cast a transcriptome-wide view on the transported mRNAs and cognate RBP binding sites during endosomal messenger ribonucleoprotein (mRNP) transport in Ustilago maydis Using individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP), we compare the key transport RBP Rrm4 and the newly identified endosomal mRNP component Grp1 that is crucial to coordinate hyphal growth. Both RBPs bind predominantly in the 3' untranslated region of thousands of shared cargo mRNAs, often in close proximity. Intriguingly, Rrm4 precisely binds at stop codons, which constitute landmark sites of translation, suggesting an intimate connection of mRNA transport and translation. Towards uncovering the code of recognition, we identify UAUG as specific binding motif of Rrm4 that is bound by its third RRM domain. Altogether, we provide first insights into the positional organisation of co-localising RBPs on individual cargo mRNAs.
Asunto(s)
Proteínas Fúngicas/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas/genética , Ustilago/genética , Sitios de Unión , Transporte Biológico/genética , Endosomas/genética , Regulación de la Expresión Génica , Microtúbulos/genética , Transporte de ARN/genética , ARN Mensajero/genética , Transcriptoma/genéticaRESUMEN
Precise knowledge on the binding sites of an RNA-binding protein (RBP) is key to understanding the complex post-transcriptional regulation of gene expression. This information can be obtained from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) experiments. Here, we present a complete data analysis workflow to reliably detect RBP binding sites from iCLIP data. The workflow covers all steps from the initial quality control of the sequencing reads up to peak calling and quantification of RBP binding. For each tool, we explain the specific requirements for iCLIP data analysis and suggest optimised parameter settings.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Inmunoprecipitación/métodos , ARN/aislamiento & purificación , Sitios de Unión/genética , Regulación de la Expresión Génica/genética , Humanos , Unión Proteica/genética , ARN/química , ARN/genéticaRESUMEN
Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) is a state-of-the-art technology to map the RNA interaction sites of an RNA-binding protein (RBP) across the transcriptome. Here, we present the new iCLIP2 protocol that allows to obtain high-quality iCLIP libraries in a fast and efficient manner. The new protocol comprises separate adapter ligations, two cDNA amplification steps and bead-based size selection. The full procedure can be completed within four days. Our advances significantly increase the complexity of the iCLIP2 libraries, resulting in a more comprehensive representation of RBP binding sites. Overall, the methodological advances in iCLIP2 allow efficient library generation and thereby promote the versatile and flexible application of this important technology.
Asunto(s)
Sitios de Unión/genética , Biblioteca de Genes , Inmunoprecipitación/métodos , Proteínas de Unión al ARN/aislamiento & purificación , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , ADN Complementario/química , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Humanos , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Rayos UltravioletaRESUMEN
Alternative splicing is a key step in eukaryotic gene expression that allows for the production of multiple transcript and protein isoforms from the same gene. Even though splicing is perturbed in many diseases, we currently lack insights into regulatory mechanisms promoting its precision and efficiency. We analyze high-throughput mutagenesis data obtained for an alternatively spliced exon in the proto-oncogene RON and determine the functional units that control this splicing event. Using mathematical modeling of distinct splicing mechanisms, we show that alternative splicing is based in RON on a so-called "exon definition" mechanism. Here, the recognition of the adjacent exons by the spliceosome is required for removal of an intron. We use our model to analyze the differences between the exon and intron definition scenarios and find that exon definition prevents the accumulation of deleterious, partially spliced retention products during alternative splicing regulation. Furthermore, it modularizes splicing control, as multiple regulatory inputs are integrated into a common net input, irrespective of the location and nature of the corresponding cis-regulatory elements in the pre-messenger RNA. Our analysis suggests that exon definition promotes robust and reliable splicing outcomes in RON splicing.
Asunto(s)
Empalme Alternativo , Proto-Oncogenes , Exones/genética , Intrones/genéticaRESUMEN
The embryonic origin of pericytes is heterogeneous, both between and within organs. While pericytes of coelomic organs were proposed to differentiate from the mesothelium, a single-layer squamous epithelium, the embryonic origin of pancreatic pericytes has yet to be reported. Here, we show that adult pancreatic pericytes originate from the embryonic pancreatic mesenchyme. Our analysis indicates that pericytes of the adult mouse pancreas originate from cells expressing the transcription factor Nkx3.2. In the embryonic pancreas, Nkx3.2-expressing cells constitute the multilayered mesenchyme, which surrounds the pancreatic epithelium and supports multiple events in its development. Thus, we traced the fate of the pancreatic mesenchyme. Our analysis reveals that pancreatic mesenchymal cells acquire various pericyte characteristics, including gene expression, typical morphology, and periendothelial location, during embryogenesis. Importantly, we show that the vast majority of pancreatic mesenchymal cells differentiate into pericytes already at embryonic day 13.5 and progressively acquires a more mature pericyte phenotype during later stages of pancreas organogenesis. Thus, our study indicates the embryonic pancreatic mesenchyme as the primary origin to adult pancreatic pericytes. As pericytes of other coelomic organs were suggested to differentiate from the mesothelium, our findings point to a distinct origin of these cells in the pancreas. Thus, our study proposes a complex ontogeny of pericytes of coelomic organs.
Asunto(s)
Mesodermo/citología , Mesodermo/embriología , Páncreas/citología , Páncreas/embriología , Pericitos/citología , Animales , Biomarcadores/metabolismo , Desarrollo Embrionario/genética , Células Endoteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción/metabolismoRESUMEN
The Freiburg RNA tools webserver is a well established online resource for RNA-focused research. It provides a unified user interface and comprehensive result visualization for efficient command line tools. The webserver includes RNA-RNA interaction prediction (IntaRNA, CopraRNA, metaMIR), sRNA homology search (GLASSgo), sequence-structure alignments (LocARNA, MARNA, CARNA, ExpaRNA), CRISPR repeat classification (CRISPRmap), sequence design (antaRNA, INFO-RNA, SECISDesign), structure aberration evaluation of point mutations (RaSE), and RNA/protein-family models visualization (CMV), and other methods. Open education resources offer interactive visualizations of RNA structure and RNA-RNA interaction prediction as well as basic and advanced sequence alignment algorithms. The services are freely available at http://rna.informatik.uni-freiburg.de.
Asunto(s)
Secuencia de Bases/genética , Internet , ARN/genética , Programas Informáticos , Algoritmos , Conformación de Ácido Nucleico , ARN/química , Alineación de Secuencia/instrumentación , Análisis de Secuencia de ARN/instrumentación , Relación Estructura-ActividadRESUMEN
Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome.
Asunto(s)
Aspartato-ARNt Ligasa/genética , Enfermedad de Leigh/genética , Aminoacil-ARN de Transferencia/genética , Adulto , Secuencia de Aminoácidos/genética , Animales , Aspartato-ARNt Ligasa/biosíntesis , Sordera/genética , Sordera/patología , Oído Interno/metabolismo , Oído Interno/patología , Femenino , Fibroblastos , Expresión Génica/genética , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de Leigh/patología , Masculino , Ratones , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/patología , Mutación Missense/genética , Consumo de Oxígeno/genética , LinajeRESUMEN
Alternative splicing is a key player in the creation of complex mammalian transcriptomes and its misregulation is associated with many human diseases. Multiple mRNA isoforms are generated from most human genes, a process mediated by the interplay of various RNA signature elements and trans-acting factors that guide spliceosomal assembly and intron removal. Here, we introduce a splicing predictor that evaluates hundreds of RNA features simultaneously to successfully differentiate between exons that are constitutively spliced, exons that undergo alternative 5' or 3' splice-site selection, and alternative cassette-type exons. Surprisingly, the splicing predictor did not feature strong discriminatory contributions from binding sites for known splicing regulators. Rather, the ability of an exon to be involved in one or multiple types of alternative splicing is dictated by its immediate sequence context, mainly driven by the identity of the exon's splice sites, the conservation around them, and its exon/intron architecture. Thus, the splicing behavior of human exons can be reliably predicted based on basic RNA sequence elements.
Asunto(s)
Empalme Alternativo , Biología Computacional/métodos , Sitios de Empalme de ARN/genética , Análisis de Secuencia de ARN , Animales , Exones , Código Genético , Humanos , Mamíferos/genética , Reproducibilidad de los ResultadosRESUMEN
Alternative polyadenylation has been implicated as an important regulator of gene expression. In some cases, alternative polyadenylation is known to couple with alternative splicing to influence last intron removal. However, it is unknown whether alternative polyadenylation events influence alternative splicing decisions at upstream exons. Knockdown of the polyadenylation factors CFIm25 or CstF64 in HeLa cells was used as an approach in identifying alternative polyadenylation and alternative splicing events on a genome-wide scale. Although hundreds of alternative splicing events were found to be differentially spliced in the knockdown of CstF64, genes associated with alternative polyadenylation did not exhibit an increased incidence of alternative splicing. These results demonstrate that the coupling between alternative polyadenylation and alternative splicing is usually limited to defining the last exon. The striking influence of CstF64 knockdown on alternative splicing can be explained through its effects on UTR selection of known splicing regulators such as hnRNP A2/B1, thereby indirectly influencing splice site selection. We conclude that changes in the expression of the polyadenylation factor CstF64 influences alternative splicing through indirect effects.
Asunto(s)
Empalme Alternativo/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Intrones/fisiología , Poliadenilación/fisiología , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Factores de Escisión y Poliadenilación de ARNm/genéticaRESUMEN
LEF/TCFs direct the final step in Wnt/ß-catenin signalling by recruiting ß-catenin to genes for activation of transcription. Ancient, non-vertebrate TCFs contain two DNA binding domains, a High Mobility Group box for recognition of the Wnt Response Element (WRE; 5'-CTTTGWWS-3') and the C-clamp domain for recognition of the GC-rich Helper motif (5'-RCCGCC-3'). Two vertebrate TCFs (TCF-1/TCF7 and TCF-4/TCF7L2) use the C-clamp as an alternatively spliced domain to regulate cell-cycle progression, but how the C-clamp influences TCF binding and activity genome-wide is not known. Here, we used a doxycycline inducible system with ChIP-seq to assess how the C-clamp influences human TCF1 binding genome-wide. Metabolic pulse-labeling of nascent RNA with 4'Thiouridine was used with RNA-seq to connect binding to the Wnt transcriptome. We find that the C-clamp enables targeting to a greater number of gene loci for stronger occupancy and transcription regulation. The C-clamp uses Helper sites concurrently with WREs for gene targeting, but it also targets TCF1 to sites that do not have readily identifiable canonical WREs. The coupled ChIP-seq/4'Thiouridine-seq analysis identified new Wnt target genes, including additional regulators of cell proliferation. Thus, C-clamp containing isoforms of TCFs are potent transcriptional regulators with an expanded transcriptome directed by C-clamp-Helper site interactions.
Asunto(s)
Factor Nuclear 1-alfa del Hepatocito/metabolismo , Transcriptoma , Vía de Señalización Wnt , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Inmunoprecipitación de Cromatina , ADN/química , ADN/metabolismo , Regulación de la Expresión Génica , Sitios Genéticos , Factor Nuclear 1-alfa del Hepatocito/química , Factor Nuclear 1-alfa del Hepatocito/genética , Humanos , Mutación , Motivos de Nucleótidos , Unión Proteica , Estructura Terciaria de Proteína , Elementos de Respuesta , Análisis de Secuencia de ADN , TiouridinaRESUMEN
Alternative splicing is regulated by splicing factors that modulate splice site selection. In some cases, however, splicing factors show antagonistic activities by either activating or repressing splicing. Here, we show that these opposing outcomes are based on their binding location relative to regulated 5' splice sites. SR proteins enhance splicing only when they are recruited to the exon. However, they interfere with splicing by simply relocating them to the opposite intronic side of the splice site. hnRNP splicing factors display analogous opposing activities, but in a reversed position dependence. Activation by SR or hnRNP proteins increases splice site recognition at the earliest steps of exon definition, whereas splicing repression promotes the assembly of nonproductive complexes that arrest spliceosome assembly prior to splice site pairing. Thus, SR and hnRNP splicing factors exploit similar mechanisms to positively or negatively influence splice site selection.
Asunto(s)
Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Empalme del ARN/fisiología , Exones , Células HeLa , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Intrones , Sitios de Empalme de ARN/genética , Sitios de Empalme de ARN/fisiología , Empalme del ARN/genéticaRESUMEN
INTRODUCTION: Lenz microphthalmia syndrome (LMS) is a genetically heterogeneous X-linked disorder characterised by microphthalmia/anophthalmia, skeletal abnormalities, genitourinary malformations, and anomalies of the digits, ears, and teeth. Intellectual disability and seizure disorders are seen in about 60% of affected males. To date, no gene has been identified for LMS in the microphthalmia syndrome 1 locus (MCOPS1). In this study, we aim to find the disease-causing gene for this condition. METHODS AND RESULTS: Using exome sequencing in a family with three affected brothers, we identified a mutation in the intron 7 splice donor site (c.471+2TâA) of the N-acetyltransferase NAA10 gene. NAA10 has been previously shown to be mutated in patients with Ogden syndrome, which is clinically distinct from LMS. Linkage studies for this family mapped the disease locus to Xq27-Xq28, which was consistent with the locus of NAA10. The mutation co-segregated with the phenotype and cDNA analysis showed aberrant transcripts. Patient fibroblasts lacked expression of full length NAA10 protein and displayed cell proliferation defects. Expression array studies showed significant dysregulation of genes associated with genetic forms of anophthalmia such as BMP4, STRA6, and downstream targets of BCOR and the canonical WNT pathway. In particular, STRA6 is a retinol binding protein receptor that mediates cellular uptake of retinol/vitamin A and plays a major role in regulating the retinoic acid signalling pathway. A retinol uptake assay showed that retinol uptake was decreased in patient cells. CONCLUSIONS: We conclude that the NAA10 mutation is the cause of LMS in this family, likely through the dysregulation of the retinoic acid signalling pathway.