Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Opt Express ; 31(10): 16451-16459, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37157723

RESUMEN

Due to their high degree of parallelism, fast processing speeds and low power consumption, analog optical functional elements offer interesting routes for realizing neuromorphic computer hardware. For instance, convolutional neural networks lend themselves to analog optical implementations by exploiting the Fourier-transform characteristics of suitable designed optical setups. However, the efficient implementation of optical nonlinearities for such neural networks still represents challenges. In this work, we report on the realization and characterization of a three-layer optical convolutional neural network where the linear part is based on a 4f-imaging system and the optical nonlinearity is realized via the absorption profile of a cesium atomic vapor cell. This system classifies the handwritten digital dataset MNIST with 83.96% accuracy, which agrees well with corresponding simulations. Our results thus demonstrate the viability of utilizing atomic nonlinearities in neural network architectures with low power consumption.

2.
Opt Lett ; 46(7): 1720-1723, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33793527

RESUMEN

In this Letter, we demonstrate how to optimize the magneto-optic response of a Huygens metasurface composed of square arrays of all-dielectric nano-disk scatterers. We compare cylindrical and shape-modified disks. Both provide a strongly enhanced Faraday rotation that is accompanied by almost 100% transmittance. The shape modification obtained via a Bayesian optimization algorithm results in a 50% increase in the magneto-optic response compared to the best cylindrical disk, providing 15° of polarization rotation for a 260 nm thick metasurface.

3.
Nano Lett ; 20(4): 2625-2631, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32160472

RESUMEN

Harnessing tailored disorder for broadband light scattering enables high-resolution signal analysis in nanophotonic spectrometers with a small device footprint. Multiple scattering events in the disordered medium enhance the effective path length which leads to increased resolution. Here we demonstrate an on-chip random spectrometer cointegrated with superconducting single-photon detectors suitable for photon-scarce environments. We combine an efficient broadband fiber-to-chip coupling approach with a random scattering area and broadband transparent silicon nitride waveguides to operate the spectrometer in a diffusive regime. Superconducting nanowire single-photon detectors at each output waveguide are used to perform spectral-to-spatial mapping via the transmission matrix at the system, allowing us to reconstruct a given probe signal. We show operation over a wide spectral range with sensitivity down to powers of -111.5 dBm in the telecom band.

4.
Rep Prog Phys ; 83(8): 082401, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32726300

RESUMEN

Rooted in quantum optics and benefiting from its well-established foundations, strong coupling in nanophotonics has experienced increasing popularity in recent years. With nanophotonics being an experiment-driven field, the absence of appropriate theoretical methods to describe ground-breaking advances has often emerged as an important issue. To address this problem, the temptation to directly transfer and extend concepts already available from quantum optics is strong, even if a rigorous justification is not always available. In this review we discuss situations where, in our view, this strategy has indeed overstepped its bounds. We focus on exciton-plasmon interactions, and particularly on the idea of calculating the number of excitons involved in the coupling. We analyse how, starting from an unfounded interpretation of the term N/V that appears in theoretical descriptions at different levels of complexity, one might be tempted to make independent assumptions for what the number N and the volume V are, and attempt to calculate them separately. Such an approach can lead to different, often contradictory results, depending on the initial assumptions (e.g. through different treatments of V as the-ambiguous in plasmonics-mode volume). We argue that the source of such contradictions is the question itself-How many excitons are coupled?, which disregards the true nature of the coupled components of the system, has no meaning and often not even any practical importance. If one is interested in validating the quantum nature of the system-which appears to be the motivation driving the pursuit of strong coupling with small N-one could instead focus on quantities such as the photon emission rate or the second-order correlation function. While many of the issues discussed here may appear straightforward to specialists, our target audience is predominantly newcomers to the field, either students or scientists specialised in different disciplines. We have thus tried to minimise the occurrence of proofs and overly-technical details, and instead provide a qualitative discussion of analyses that should be avoided, hoping to facilitate further growth of this promising area.

5.
Opt Express ; 28(2): 1714-1721, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32121878

RESUMEN

Plasmonic nanoparticles with a dielectric-metal core-shell morphology exhibit hybridized modes where the surface plasmon polaritons at the outer and inner surfaces of the shell couple. We demonstrate that suitably tailoring the interference of such hybrid surface plasmon polariton modes leads to composite subwavelength nanospheres with negative asymmetry parameters and strong scattering in the optical frequency range. As a result, for a low density collection of scatterers an anomalous regime occurs, where the extinction mean free path is longer than the transport mean free path. Explicit results for silver-coated nanospheres are presented.

6.
Opt Express ; 28(9): 13938-13948, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32403859

RESUMEN

Dark plasmonic modes have interesting properties, including longer lifetimes and narrower linewidths than their radiative counterpart, and little to no radiative losses. However, they have not been extensively studied yet due to their optical inaccessibility. In this work, we systematically investigated the dark radial breathing modes (RBMs) in monocrystalline gold nanodisks, specifically their outcoupling behavior into the far-field by cathodoluminescence spectroscopy. Increasing the substrate thickness resulted in an up to 4-fold enhanced visibility. This is attributed to breaking the mirror symmetry by the high-index substrate, creating an effective dipole moment. Furthermore, the resonance energy of the dark RMBs can be easily tuned by varying the nanodisk diameter, making them promising candidates for nanophotonic applications.

7.
Opt Lett ; 45(13): 3665-3668, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32630925

RESUMEN

We demonstrate experimentally and computationally an intricate cavity size dependence of the anomalous near-infrared mode spectrum of an ordinary optical resonator that is combined with a ZnO:Ga-based hyperbolic metamaterial (HMM). Specifically, we reveal the existence of a resonance in subwavelength-sized cavities and demonstrate control over the first-order cavity mode dispersion. We elaborate that these effects arise due to the HMM combining the mode dispersions of purely metallic and purely dielectric cavity cores into a distinct intermediate regime. By tailoring the HMM fill factor, this unique dispersion of a subwavelength resonator can be freely tuned between these two limiting cases.

8.
Phys Rev Lett ; 122(21): 213901, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31283304

RESUMEN

We introduce a second quantization scheme based on quasinormal modes, which are the dissipative modes of leaky optical cavities and plasmonic resonators with complex eigenfrequencies. The theory enables the construction of multiplasmon or multiphoton Fock states for arbitrary three-dimensional dissipative resonators and gives a solid understanding to the limits of phenomenological dissipative Jaynes-Cummings models. In the general case, we show how different quasinormal modes interfere through an off-diagonal mode coupling and demonstrate how these results affect cavity-modified spontaneous emission. To illustrate the practical application of the theory, we show examples using a gold nanorod dimer and a hybrid dielectric-metal cavity structure.

9.
Opt Lett ; 43(13): 3180-3183, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29957811

RESUMEN

Compact spectrometers based on disordered planar waveguides exhibit a rather high resolution with a relatively small footprint compared to conventional spectrometers. This is achieved by multiple scattering of light, which-if properly engineered-significantly enhances the effective optical path length. Here a design study of random spectrometers for TE- and TM-polarized light is presented that combines the results of Mie theory, multiple-scattering theory, and full electromagnetic simulations. It is shown that the performance of such random spectrometers depends on single-scattering quantities, notably on the overall scattering efficiency and the asymmetry parameter. Further, the study shows that a well-developed diffusive regime is not required in practice and that a standard integrated-optical layout is sufficient to obtain efficient devices even for rather weakly scattering systems consisting of low index inclusions in high-index matrices, such as pores in planar silicon-nitride-based waveguides. This allows for both significant reductions in footprint with acceptable losses in resolution and for device operation in the visible and near-infrared frequency range.

10.
Opt Express ; 25(15): 16947-16956, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28789194

RESUMEN

In this manuscript we report on a near field study of two-dimensional plasmonic gold nano-triangles using electron energy loss spectroscopy in combination with scanning transmission electron microscopy, as well as discontinuous Galerkin time-domain computations. With increasing nano-triangle size, we observe a transition from localized surface plasmons on small nano-triangles to non-resonant propagating surface plasmon polaritons on large nano-triangles. Furthermore we demonstrate that nano-triangles with a groove cut can support localized as well as propagating plasmons in the same energy range.

11.
Opt Lett ; 42(15): 2918-2921, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957207

RESUMEN

A design is presented for a beam splitter suitable for ultrashort pulses in the mid-infrared and terahertz spectral range consisting of a structured metal layer on a diamond substrate. Both the theory and experiment show that this beam splitter does not distort the temporal pulse shape.

12.
Phys Rev Lett ; 118(23): 237402, 2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28644673

RESUMEN

We present a semiclassical analytic model for spherical core-shell surface plasmon lasers. Within this model, we drop the widely used one-mode approximations in favor of fully electromagnetic Mie theory. This allows for incorporation of realistic gain relaxation rates that so far are massively underestimated. Especially, higher order modes can undermine and even reverse the beneficial effects of the strong Purcell effect in such systems. Our model gives a clear view on gain and resonator requirements, as well as on the output characteristics that will help experimenters to design more efficient particle-based spasers.

13.
Opt Express ; 23(19): 25048-57, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26406705

RESUMEN

We report on the fabrication and electro-optical characterization of SiGeSn multi-quantum well PIN diodes. Two types of PIN diodes, in which two and four quantum wells with well and barrier thicknesses of 10 nm each are sandwiched between B- and Sb-doped Ge-regions, were fabricated as single-mesa devices, using a low-temperature fabrication process. We discuss measurements of the diode characteristics, optical responsivity and room-temperature electroluminescence and compare with theoretical predictions from band structure calculations.

14.
Nano Lett ; 14(5): 2623-7, 2014 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-24694035

RESUMEN

Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.

15.
Nano Lett ; 13(5): 2041-6, 2013 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-23627496

RESUMEN

In this Letter we study the relations among shape, symmetry, and plasmon resonance shift in a single gold nanoparticle during laser melting. A beam of an argon ion laser is focused on a selected particle, while its optical and shape properties can be observed with the help of a combined dark-field/photoluminescence microscope and an atomic force microscope, respectively. Starting from a spherical shape, radiation pressure forms the melting gold particle into an upright standing rod on a glass substrate, showing a characteristic dipole scattering pattern. A red-shift of the photoluminescence signal and the scattering spectrum is observed. The melting process can be controlled allowing the formation of different particle heights and plasmon resonance shifts. In situ tuning of the plasmon resonance of individual particles is possible with this reversible melting process.

16.
Nano Lett ; 13(2): 703-8, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23339664

RESUMEN

Metamaterials are artificial media which can provide optical properties not available from natural materials. These properties often result from the resonant excitation of plasmonic modes in the metallic building blocks ("metaatoms") of the metamaterial. Electromagnetic interactions between the metaatoms significantly modify the resonances of the individual metaatoms and influence the optical properties of the whole metamaterial. To better understand these interactions, we study in this Letter the evolution of the plasmonic near-field in the course of the transition from an isolated metaatom, in our case a split-ring resonator (SRR), to a photonic metamaterial via electron energy-loss spectroscopy. For small SRR ensembles, we observe the formation of discrete optical bright and dark modes due to coupling of the metaatoms. Large SRR arrays reveal a quasi-continuum of modes in the interior and distinct edge modes at the boundaries of the array. Our experimental results are in excellent agreement with numerical calculations.

17.
Opt Express ; 21(12): 14683-97, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23787657

RESUMEN

A detailed analysis of the B-spline Modal Method (BMM) for one- and two-dimensional diffraction gratings and a comparison to the Fourier Modal Method (FMM) is presented. Owing to its intrinsic capability to accurately resolve discontinuities, BMM avoids the notorious problems of FMM that are associated with the Gibbs phenomenon. As a result, BMM facilitates significantly more efficient eigenmode computations. With regard to BMM-based transmission and reflection computations, it is demonstrated that a novel Galerkin approach (in conjunction with a scattering-matrix algorithm) allows for an improved field matching between different layers. This approach is superior relative to the traditional point-wise field matching. Moreover, only this novel Galerkin approach allows for an competitive extension of BMM to the case of two-dimensional diffraction gratings. These improvements will be very useful for high-accuracy grating computations in general and for the analysis of associated electromagnetic field profiles in particular.


Asunto(s)
Algoritmos , Diseño Asistido por Computadora , Modelos Teóricos , Análisis Numérico Asistido por Computador , Refractometría/instrumentación , Simulación por Computador , Análisis de Fourier , Luz , Dispersión de Radiación
18.
Opt Express ; 21(10): 12022-37, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23736424

RESUMEN

Efficient modelling of the magneto-optic effects of transition metals such as nickel, cobalt and iron is a topic of growing interest within the nano-optics community. In this paper, we present a general discussion of appropriate material models for the linear dielectric properties for such metals, provide parameter fits and formulate the anisotropic response in terms of auxiliary differential equations suitable for time-domain simulations. We validate both our material models and their implementation by comparing numerical results obtained with the Discontinuous Galerkin time-domain (DGTD) method to analytical results and previously published experimental data.


Asunto(s)
Luz , Campos Magnéticos , Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Modelos Químicos , Simulación por Computador
19.
Opt Lett ; 38(18): 3693-5, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24104849

RESUMEN

We study two-photon transport in a one-dimensional waveguide with a side-coupled two-level system. Depending on the momentum of the incoming photons, we find that the nature of the scattering process changes considerably. We further show that bunching behavior can be found in the scattered light. As a result, we find that the waveguide dispersion has a strong influence on the photon correlations. By modifying the momentum of the pulse, the nature of the correlations can therefore be altered or optimized.

20.
Opt Lett ; 38(22): 4597-600, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24322083

RESUMEN

By using a recently introduced approach combining a focus-modulation technique with a common-path interferometer, we measure quantitatively the extinction, scattering, and absorption cross-section spectra of individual optical antennas. The experimental results on thin-wire antennas, slot antennas, bow-tie antennas, rectangular antennas, and square-shaped antennas resonating at around 1.4 µm wavelength are discussed. We find increased resonant scattering cross sections for the latter four antennas compared to the thin-wire antenna, both in absolute terms and relative to the absorption cross section. The square-shaped antenna's resonant extinction cross section approaches the limit of a coherent point dipole. However, the ratio of the resonant extinction cross section to the geometrical cross section of 38 is largest for the simple thin-wire antenna.


Asunto(s)
Nanocables , Análisis Espectral/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA