Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(3): e1010387, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36972313

RESUMEN

BACKGROUND: Tuberculosis (TB) remains a major public health problem globally, even compared to COVID-19. Genome-wide studies have failed to discover genes that explain a large proportion of genetic risk for adult pulmonary TB, and even fewer have examined genetic factors underlying TB severity, an intermediate trait impacting disease experience, quality of life, and risk of mortality. No prior severity analyses used a genome-wide approach. METHODS AND FINDINGS: As part of our ongoing household contact study in Kampala, Uganda, we conducted a genome-wide association study (GWAS) of TB severity measured by TBScore, in two independent cohorts of culture-confirmed adult TB cases (n = 149 and n = 179). We identified 3 SNPs (P<1.0 x 10-7) including one on chromosome 5, rs1848553, that was GWAS significant (meta-analysis p = 2.97x10-8). All three SNPs are in introns of RGS7BP and have effect sizes corresponding to clinically meaningful reductions in disease severity. RGS7BP is highly expressed in blood vessels and plays a role in infectious disease pathogenesis. Other genes with suggestive associations defined gene sets involved in platelet homeostasis and transport of organic anions. To explore functional implications of the TB severity-associated variants, we conducted eQTL analyses using expression data from Mtb-stimulated monocyte-derived macrophages. A single variant (rs2976562) associated with monocyte SLA expression (p = 0.03) and subsequent analyses indicated that SLA downregulation following MTB stimulation associated with increased TB severity. Src Like Adaptor (SLAP-1), encoded by SLA, is highly expressed in immune cells and negatively regulates T cell receptor signaling, providing a potential mechanistic link to TB severity. CONCLUSIONS: These analyses reveal new insights into the genetics of TB severity with regulation of platelet homeostasis and vascular biology being central to consequences for active TB patients. This analysis also reveals genes that regulate inflammation can lead to differences in severity. Our findings provide an important step in improving TB patient outcomes.


Asunto(s)
Tuberculosis , Adulto , Humanos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Inflamación/genética , Polimorfismo de Nucleótido Simple , Calidad de Vida , Tuberculosis/genética , Uganda , Sitios de Carácter Cuantitativo
2.
Genome Res ; 32(4): 778-790, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35210353

RESUMEN

More than 90% of genetic variants are rare in most modern sequencing studies, such as the Alzheimer's Disease Sequencing Project (ADSP) whole-exome sequencing (WES) data. Furthermore, 54% of the rare variants in ADSP WES are singletons. However, both single variant and unit-based tests are limited in their statistical power to detect an association between rare variants and phenotypes. To best use missense rare variants and investigate their biological effect, we examine their association with phenotypes in the context of protein structures. We developed a protein structure-based approach, protein optimized kernel evaluation of missense nucleotides (POKEMON), which evaluates rare missense variants based on their spatial distribution within a protein rather than their allele frequency. The hypothesis behind this test is that the three-dimensional spatial distribution of variants within a protein structure provides functional context to power an association test. POKEMON identified three candidate genes (TREM2, SORL1, and EXOC3L4) and another suggestive gene from the ADSP WES data. For TREM2 and SORL1, two known Alzheimer's disease (AD) genes, the signal from the spatial cluster is stable even if we exclude known AD risk variants, indicating the presence of additional low-frequency risk variants within these genes. EXOC3L4 is a novel AD risk gene that has a cluster of variants primarily shared by case subjects around the Sec6 domain. This cluster is also validated in an independent replication data set and a validation data set with a larger sample size.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Proteínas de Transporte de Membrana/genética , Mutación Missense , Fenotipo , Secuenciación del Exoma
3.
PLoS Comput Biol ; 20(2): e1011875, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38346081

RESUMEN

Recently, novel biotechnologies to quantify RNA modifications became an increasingly popular choice for researchers who study epitranscriptome. When studying RNA methylations such as N6-methyladenosine (m6A), researchers need to make several decisions in its experimental design, especially the sample size and a proper statistical power. Due to the complexity and high-throughput nature of m6A sequencing measurements, methods for power calculation and study design are still currently unavailable. In this work, we propose a statistical power assessment tool, magpie, for power calculation and experimental design for epitranscriptome studies using m6A sequencing data. Our simulation-based power assessment tool will borrow information from real pilot data, and inspect various influential factors including sample size, sequencing depth, effect size, and basal expression ranges. We integrate two modules in magpie: (i) a flexible and realistic simulator module to synthesize m6A sequencing data based on real data; and (ii) a power assessment module to examine a set of comprehensive evaluation metrics.


Asunto(s)
Metilación de ARN , ARN , ARN/genética , ARN/metabolismo , Metilación , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Hum Mol Genet ; 31(17): 2876-2886, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35383839

RESUMEN

Most Alzheimer's disease (AD)-associated genetic variants do not change protein coding sequence and thus likely exert their effects through regulatory mechanisms. RNA editing, the post-transcriptional modification of RNA bases, is a regulatory feature that is altered in AD patients that differs across ancestral backgrounds. Editing QTLs (edQTLs) are DNA variants that influence the level of RNA editing at a specific site. To study the relationship of DNA variants genome-wide, and particularly in AD-associated loci, with RNA editing, we performed edQTL analyses in self-reported individuals of African American (AF) or White (EU) race with corresponding global genetic ancestry averaging 82.2% African ancestry (AF) and 96.8% European global ancestry (EU) in the two groups, respectively. We used whole-genome genotyping array and RNA sequencing data from peripheral blood of 216 AD cases and 212 age-matched, cognitively intact controls. We identified 2144 edQTLs in AF and 3579 in EU, of which 1236 were found in both groups. Among these, edQTLs in linkage disequilibrium (r2 > 0.5) with AD-associated genetic variants in the SORL1, SPI1 and HLA-DRB1 loci were associated with sites that were differentially edited between AD cases and controls. While there is some shared RNA editing regulatory architecture, most edQTLs had distinct effects on the rate of RNA editing in different ancestral populations suggesting a complex architecture of RNA editing regulation. Altered RNA editing may be one possible mechanism for the functional effect of AD-associated variants and may contribute to observed differences in the genetic etiology of AD between ancestries.


Asunto(s)
Enfermedad de Alzheimer , Edición de ARN , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Población Negra , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Desequilibrio de Ligamiento , Proteínas de Transporte de Membrana/genética , Sitios de Carácter Cuantitativo/genética , Edición de ARN/genética
5.
Alzheimers Dement ; 20(1): 253-265, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37578203

RESUMEN

INTRODUCTION: Multiple infectious agents, including viruses, bacteria, fungi, and protozoa, have been linked to Alzheimer's disease (AD) risk by independent lines of evidence. We explored this association by comparing the frequencies of viral species identified in a large sample of AD cases and controls. METHODS: DNA sequence reads that did not align to the human genome in sequences were mapped to viral reference sequences, quantified, and then were tested for association with AD in whole exome sequences (WES) and whole genome sequences (WGS) datasets. RESULTS: Several viruses were significant predictors of AD according to the machine learning classifiers. Subsequent regression analyses showed that herpes simplex type 1 (HSV-1) (odds ratio [OR] = 3.71, p = 8.03 × 10-4) and human papillomavirus 71 (HPV-71; OR = 3.56, p = 0.02), were significantly associated with AD after Bonferroni correction. The phylogenetic-related cluster of Herpesviridae was significantly associated with AD in several strata of the data (p < 0.01). DISCUSSION: Our results support the hypothesis that viral infection, especially HSV-1, is associated with AD risk.


Asunto(s)
Enfermedad de Alzheimer , Herpes Simple , Herpesvirus Humano 1 , Humanos , Enfermedad de Alzheimer/complicaciones , Filogenia , Herpesvirus Humano 1/genética , ADN
6.
Alzheimers Dement ; 20(2): 1123-1136, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37881831

RESUMEN

INTRODUCTION: The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site Alzheimer's Genomics Database (GenomicsDB) is a public knowledge base of Alzheimer's disease (AD) genetic datasets and genomic annotations. METHODS: GenomicsDB uses a custom systems architecture to adopt and enforce rigorous standards that facilitate harmonization of AD-relevant genome-wide association study summary statistics datasets with functional annotations, including over 230 million annotated variants from the AD Sequencing Project. RESULTS: GenomicsDB generates interactive reports compiled from the harmonized datasets and annotations. These reports contextualize AD-risk associations in a broader functional genomic setting and summarize them in the context of functionally annotated genes and variants. DISCUSSION: Created to make AD-genetics knowledge more accessible to AD researchers, the GenomicsDB is designed to guide users unfamiliar with genetic data in not only exploring but also interpreting this ever-growing volume of data. Scalable and interoperable with other genomics resources using data technology standards, the GenomicsDB can serve as a central hub for research and data analysis on AD and related dementias. HIGHLIGHTS: The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) offers to the public a unique, disease-centric collection of AD-relevant GWAS summary statistics datasets. Interpreting these data is challenging and requires significant bioinformatics expertise to standardize datasets and harmonize them with functional annotations on genome-wide scales. The NIAGADS Alzheimer's GenomicsDB helps overcome these challenges by providing a user-friendly public knowledge base for AD-relevant genetics that shares harmonized, annotated summary statistics datasets from the NIAGADS repository in an interpretable, easily searchable format.


Asunto(s)
Enfermedad de Alzheimer , Estados Unidos , Humanos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , National Institute on Aging (U.S.) , Genómica , Bases de Datos Factuales , Predisposición Genética a la Enfermedad/genética
7.
Alzheimers Dement ; 20(2): 1268-1283, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37985223

RESUMEN

INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Estudio de Asociación del Genoma Completo , Endofenotipos , Predisposición Genética a la Enfermedad/genética , Cognición , Trastornos de la Memoria/genética , Polimorfismo de Nucleótido Simple/genética
8.
Alzheimers Dement ; 20(2): 1250-1267, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984853

RESUMEN

BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales  = 11,942; Nfemales  = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.


Asunto(s)
Enfermedad de Alzheimer , Envejecimiento Cognitivo , Humanos , Masculino , Femenino , Estudio de Asociación del Genoma Completo , Enfermedad de Alzheimer/genética , Cognición , Caracteres Sexuales
9.
Alzheimers Dement ; 20(8): 5247-5261, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38958117

RESUMEN

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, p = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at p < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.


Asunto(s)
Enfermedad de Alzheimer , Población Negra , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/etnología , Predisposición Genética a la Enfermedad/genética , Población Negra/genética , Polimorfismo de Nucleótido Simple/genética , Femenino , Masculino , Anciano
10.
Alzheimers Dement ; 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39428839

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a common disorder of the elderly that is both highly heritable and genetically heterogeneous. METHODS: We investigated the association of AD with both common variants and aggregates of rare coding and non-coding variants in 13,371 individuals of diverse ancestry with whole genome sequencing (WGS) data. RESULTS: Pooled-population analyses of all individuals identified genetic variants at apolipoprotein E (APOE) and BIN1 associated with AD (p < 5 × 10-8). Subgroup-specific analyses identified a haplotype on chromosome 14 including PSEN1 associated with AD in Hispanics, further supported by aggregate testing of rare coding and non-coding variants in the region. Common variants in LINC00320 were observed associated with AD in Black individuals (p = 1.9 × 10-9). Finally, we observed rare non-coding variants in the promoter of TOMM40 distinct of APOE in pooled-population analyses (p = 7.2 × 10-8). DISCUSSION: We observed that complementary pooled-population and subgroup-specific analyses offered unique insights into the genetic architecture of AD. HIGHLIGHTS: We determine the association of genetic variants with Alzheimer's disease (AD) using 13,371 individuals of diverse ancestry with whole genome sequencing (WGS) data. We identified genetic variants at apolipoprotein E (APOE), BIN1, PSEN1, and LINC00320 associated with AD. We observed rare non-coding variants in the promoter of TOMM40 distinct of APOE.

11.
Brain ; 145(7): 2541-2554, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35552371

RESUMEN

Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, ß (females) = 0.08, P (females) = 5.76 × 10-09, ß (males) = -0.01, P(males) = 0.70, ß (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Esclerosis Múltiple , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Cognición , Disfunción Cognitiva/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Caracteres Sexuales
12.
Pediatr Nephrol ; 38(4): 1115-1126, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35943576

RESUMEN

BACKGROUND: Minimal change disease (MCD) is the major cause of childhood idiopathic nephrotic syndrome, which is characterized by massive proteinuria and debilitating edema. Proteinuria in MCD is typically rapidly reversible with corticosteroid therapy, but relapses are common, and children often have many adverse events from the repeated courses of immunosuppressive therapy. The pathobiology of MCD remains poorly understood. Prior clinical observations suggest that abnormal T-cell function may play a central role in MCD pathogenesis. Based on these observations, we hypothesized that T-cell responses to specific exposures or antigens lead to a clonal expansion of T-cell subsets, a restriction in the T-cell repertoire, and an elaboration of specific circulating factors that trigger disease onset and relapses. METHODS: To test these hypotheses, we sequenced T-cell receptors in fourteen MCD, four focal segmental glomerulosclerosis (FSGS), and four membranous nephropathy (MN) patients with clinical data and blood samples drawn during active disease and during remission collected by the Nephrotic Syndrome Study Network (NEPTUNE). We calculated several T-cell receptor diversity metrics to assess possible differences between active disease and remission states in paired samples. RESULTS: Median productive clonality did not differ between MCD active disease (0.0083; range: 0.0042, 0.0397) and remission (0.0088; range: 0.0038, 0.0369). We did not identify dominant clonotypes in MCD active disease, and few clonotypes were shared with FSGS and MN patients. CONCLUSIONS: While these data do not support an obvious role of the adaptive immune system T-cells in MCD pathogenesis, further study is warranted given the limited sample size. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Glomerulonefritis Membranosa , Glomeruloesclerosis Focal y Segmentaria , Nefrosis Lipoidea , Síndrome Nefrótico , Niño , Humanos , Nefrosis Lipoidea/tratamiento farmacológico , Glomeruloesclerosis Focal y Segmentaria/complicaciones , Neptuno , Síndrome Nefrótico/tratamiento farmacológico , Proteinuria/etiología , Glomerulonefritis Membranosa/complicaciones , Receptores de Antígenos de Linfocitos T/uso terapéutico , Recurrencia
13.
Adv Exp Med Biol ; 1415: 157-163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440029

RESUMEN

Protein function can be impacted by changes in protein structure stability, but determining which change has impact is complex. Stability can be affected by a large change in the tertiary (3D) structure of the protein or due to free-energy changes caused by single amino acid substitutions. Changes in the DNA sequence can have minor or major impact on protein stability, which can lead to disease. Inherited retinal degenerations are generally caused by single mutations which are mostly located in protein-coding regions, while age-related macular degeneration (AMD) is a complex disorder that can be influenced by some genetic variants impacting proteins involved in the disease, although not all AMD risk variants lead to amino acid changes. Here, we review ways that proteins may be affected, the identification and understanding of these changes, and how to identify causal changes that can be targeted to develop treatments to alleviate retinal degenerative disease.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Humanos , Degeneración Retiniana/genética , Retina , Degeneración Macular/genética , Mutación , Proteínas/química , Estabilidad Proteica
14.
Alzheimers Dement ; 19(11): 4886-4895, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37051669

RESUMEN

BACKGROUND: Haptoglobin (HP) is an antioxidant of apolipoprotein E (APOE), and previous reports have shown HP binds with APOE and amyloid beta (Aß) to aid its clearance. A common structural variant of the HP gene distinguishes it into two alleles: HP1 and HP2. METHODS: HP genotypes were imputed in 29 cohorts from the Alzheimer's Disease Genetics Consortium (N = 20,512). Associations between the HP polymorphism and Alzheimer's disease (AD) risk and age of onset through APOE interactions were investigated using regression models. RESULTS: The HP polymorphism significantly impacts AD risk in European-descent individuals (and in meta-analysis with African-descent individuals) by modifying both the protective effect of APOE ε2 and the detrimental effect of APOE ε4. The effect is particularly significant among APOE ε4 carriers. DISCUSSION: The effect modification of APOE by HP suggests adjustment and/or stratification by HP genotype is warranted when APOE risk is considered. Our findings also provided directions for further investigations on potential mechanisms behind this association.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/genética , Apolipoproteína E4/genética , Haptoglobinas/genética , Péptidos beta-Amiloides/genética , Alelos , Apolipoproteínas E/genética , Genotipo
15.
Alzheimers Dement ; 19(12): 5550-5562, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37260021

RESUMEN

INTRODUCTION: Most Alzheimer's disease (AD) loci have been discovered in individuals with European ancestry (EA). METHODS: We applied principal component analysis using Gaussian mixture models and an Ashkenazi Jewish (AJ) reference genome-wide association study (GWAS) data set to identify Ashkenazi Jews ascertained in GWAS (n = 42,682), whole genome sequencing (WGS, n = 16,815), and whole exome sequencing (WES, n = 20,504) data sets. The association of AD was tested genome wide (GW) in the GWAS and WGS data sets and exome wide (EW) in all three data sets (EW). Gene-based analyses were performed using aggregated rare variants. RESULTS: In addition to apolipoprotein E (APOE), GW analyses (1355 cases and 1661 controls) revealed associations with TREM2 R47H (p = 9.66 × 10-9 ), rs541586606 near RAB3B (p = 5.01 × 10-8 ), and rs760573036 between SPOCK3 and ANXA10 (p = 6.32 × 10-8 ). In EW analyses (1504 cases and 2047 controls), study-wide significant association was observed with rs1003710 near SMAP2 (p = 1.91 × 10-7 ). A significant gene-based association was identified with GIPR (p = 7.34 × 10-7 ). DISCUSSION: Our results highlight the efficacy of founder populations for AD genetic studies.


Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Humanos , Judíos/genética , Predisposición Genética a la Enfermedad/genética , Enfermedad de Alzheimer/genética , Etnicidad , Polimorfismo de Nucleótido Simple/genética
16.
Alzheimers Dement ; 19(6): 2538-2548, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36539198

RESUMEN

BACKGROUND: This study used admixture mapping to prioritize the genetic regions associated with Alzheimer's disease (AD) in African American (AA) individuals, followed by ancestry-aware regression analysis to fine-map the prioritized regions. METHODS: We analyzed 10,271 individuals from 17 different AA datasets. We performed admixture mapping and meta-analyzed the results. We then used regression analysis, adjusting for local ancestry main effects and interactions with genotype, to refine the regions identified from admixture mapping. Finally, we leveraged in silico annotation and differential gene expression data to prioritize AD-related variants and genes. RESULTS: Admixture mapping identified two genome-wide significant loci on chromosomes 17p13.2 (p = 2.2 × 10-5 ) and 18q21.33 (p = 1.2 × 10-5 ). Our fine mapping of the chromosome 17p13.2 and 18q21.33 regions revealed several interesting genes such as the MINK1, KIF1C, and BCL2. DISCUSSION: Our ancestry-aware regression approach showed that AA individuals have a lower risk of AD if they inherited African ancestry admixture block at the 17p13.2 locus. HIGHLIGHTS: We identified two genome-wide significant admixture mapping signals: on chromosomes 17p13.2 and 18q21.33, which are novel in African American (AA) populations. Our ancestry-aware regression approach showed that AA individuals have a lower risk of Alzheimer's disease (AD) if they inherited African ancestry admixture block at the 17p13.2 locus. We found that the overall proportion of African ancestry does not differ between the cases and controls that suggest African genetic ancestry alone is not likely to explain the AD prevalence difference between AA and non-Hispanic White populations.


Asunto(s)
Enfermedad de Alzheimer , Predisposición Genética a la Enfermedad , Humanos , Predisposición Genética a la Enfermedad/genética , Negro o Afroamericano/genética , Enfermedad de Alzheimer/genética , Mapeo Cromosómico/métodos , Genotipo , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Cinesinas/genética , Proteínas Serina-Treonina Quinasas/genética
17.
Nat Rev Genet ; 17(3): 129-45, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26875678

RESUMEN

Advances in genotyping technology have, over the past decade, enabled the focused search for common genetic variation associated with human diseases and traits. With the recently increased availability of detailed phenotypic data from electronic health records and epidemiological studies, the impact of one or more genetic variants on the phenome is starting to be characterized both in clinical and population-based settings using phenome-wide association studies (PheWAS). These studies reveal a number of challenges that will need to be overcome to unlock the full potential of PheWAS for the characterization of the complex human genome-phenome relationship.


Asunto(s)
Enfermedad/genética , Estudios de Asociación Genética , Variación Genética , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Registros Electrónicos de Salud , Técnicas de Genotipaje , Humanos , Fenotipo
18.
J Infect Dis ; 224(4): 695-704, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-33400784

RESUMEN

BACKGROUND: Tuberculosis (TB) is the most deadly infectious disease globally and is highly prevalent in the developing world. For individuals infected with both Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV), the risk of active TB is 10% or more annually. Previously, we identified in a genome-wide association study (GWAS) a region on chromosome 5 associated with resistance to TB, which included epigenetic marks that could influence gene regulation. We hypothesized that HIV-infected individuals exposed to Mtb who remain disease free carry epigenetic changes that strongly protect them from active TB. METHODS: We conducted a methylome-wide study in HIV-infected, TB-exposed cohorts from Uganda and Tanzania and integrated data from our GWAS. RESULTS: We identified 3 regions of interest that included markers that were differentially methylated between TB cases and controls with latent TB infection: chromosome 1 (RNF220, P = 4 × 10-5), chromosome 2 (between COPS8 and COL6A3, P = 2.7 × 10-5), and chromosome 5 (CEP72, P = 1.3 × 10-5). These methylation results co-localized with associated single-nucleotide polymorphisms (SNPs), methylation QTLs, and methylation × SNP interaction effects. These markers were in regions with regulatory markers for cells involved in TB immunity and/or lung. CONCLUSIONS: Epigenetic regulation is a potential biologic factor underlying resistance to TB in immunocompromised individuals that can act in conjunction with genetic variants.


Asunto(s)
Resistencia a la Enfermedad/genética , Epigénesis Genética , Epigenoma , Infecciones por VIH , Tuberculosis , Biomarcadores , Estudio de Asociación del Genoma Completo , VIH , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Humanos , Tanzanía , Tuberculosis/genética , Uganda
19.
BMC Bioinformatics ; 22(1): 200, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33874910

RESUMEN

BACKGROUND: Transcriptional regulation is complex, requiring multiple cis (local) and trans acting mechanisms working in concert to drive gene expression, with disruption of these processes linked to multiple diseases. Previous computational attempts to understand the influence of regulatory mechanisms on gene expression have used prediction models containing input features derived from cis regulatory factors. However, local chromatin looping and trans-acting mechanisms are known to also influence transcriptional regulation, and their inclusion may improve model accuracy and interpretation. In this study, we create a general model of transcription factor influence on gene expression by incorporating both cis and trans gene regulatory features. RESULTS: We describe a computational framework to model gene expression for GM12878 and K562 cell lines. This framework weights the impact of transcription factor-based regulatory data using multi-omics gene regulatory networks to account for both cis and trans acting mechanisms, and measures of the local chromatin context. These prediction models perform significantly better compared to models containing cis-regulatory features alone. Models that additionally integrate long distance chromatin interactions (or chromatin looping) between distal transcription factor binding regions and gene promoters also show improved accuracy. As a demonstration of their utility, effect estimates from these models were used to weight cis-regulatory rare variants for sequence kernel association test analyses of gene expression. CONCLUSIONS: Our models generate refined effect estimates for the influence of individual transcription factors on gene expression, allowing characterization of their roles across the genome. This work also provides a framework for integrating multiple data types into a single model of transcriptional regulation.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Cromatina/genética , Almacenamiento y Recuperación de la Información , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
Int J Cancer ; 148(1): 99-105, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32930425

RESUMEN

Polygenic hazard score (PHS) models are associated with age at diagnosis of prostate cancer. Our model developed in Europeans (PHS46) showed reduced performance in men with African genetic ancestry. We used a cross-validated search to identify single nucleotide polymorphisms (SNPs) that might improve performance in this population. Anonymized genotypic data were obtained from the PRACTICAL consortium for 6253 men with African genetic ancestry. Ten iterations of a 10-fold cross-validation search were conducted to select SNPs that would be included in the final PHS46+African model. The coefficients of PHS46+African were estimated in a Cox proportional hazards framework using age at diagnosis as the dependent variable and PHS46, and selected SNPs as predictors. The performance of PHS46 and PHS46+African was compared using the same cross-validated approach. Three SNPs (rs76229939, rs74421890 and rs5013678) were selected for inclusion in PHS46+African. All three SNPs are located on chromosome 8q24. PHS46+African showed substantial improvements in all performance metrics measured, including a 75% increase in the relative hazard of those in the upper 20% compared to the bottom 20% (2.47-4.34) and a 20% reduction in the relative hazard of those in the bottom 20% compared to the middle 40% (0.65-0.53). In conclusion, we identified three SNPs that substantially improved the association of PHS46 with age at diagnosis of prostate cancer in men with African genetic ancestry to levels comparable to Europeans.


Asunto(s)
Población Negra/estadística & datos numéricos , Predisposición Genética a la Enfermedad , Modelos Genéticos , Herencia Multifactorial , Neoplasias de la Próstata/epidemiología , Factores de Edad , Población Negra/genética , Estudios de Casos y Controles , Técnicas de Genotipaje , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Modelos de Riesgos Proporcionales , Neoplasias de la Próstata/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA