Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant J ; 87(6): 535-47, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27228578

RESUMEN

Black raspberry (Rubus occidentalis) is an important specialty fruit crop in the US Pacific Northwest that can hybridize with the globally commercialized red raspberry (R. idaeus). Here we report a 243 Mb draft genome of black raspberry that will serve as a useful reference for the Rosaceae and Rubus fruit crops (raspberry, blackberry, and their hybrids). The black raspberry genome is largely collinear to the diploid woodland strawberry (Fragaria vesca) with a conserved karyotype and few notable structural rearrangements. Centromeric satellite repeats are widely dispersed across the black raspberry genome, in contrast to the tight association with the centromere observed in most plants. Among the 28 005 predicted protein-coding genes, we identified 290 very recent small-scale gene duplicates enriched for sugar metabolism, fruit development, and anthocyanin related genes which may be related to key agronomic traits during black raspberry domestication. This contrasts patterns of recent duplications in the wild woodland strawberry F. vesca, which show no patterns of enrichment, suggesting gene duplications contributed to domestication traits. Expression profiles from a fruit ripening series and roots exposed to Verticillium dahliae shed insight into fruit development and disease response, respectively. The resources presented here will expedite the development of improved black and red raspberry, blackberry and other Rubus cultivars.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Rubus/genética , Rubus/microbiología , Centrómero/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Frutas/genética , Frutas/fisiología , Duplicación de Gen , Genómica/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Rosaceae/genética , Análisis de Secuencia de ADN , Verticillium/patogenicidad
2.
BMC Plant Biol ; 15: 258, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26499487

RESUMEN

BACKGROUND: Due to a relatively high level of codominant inheritance and transferability within and among taxonomic groups, simple sequence repeat (SSR) markers are important elements in comparative mapping and delineation of genomic regions associated with traits of economic importance. Expressed sequence tags (ESTs) are a source of SSRs that can be used to develop markers to facilitate plant breeding and for more basic research across genera and higher plant orders. METHODS: Leaf and meristem tissue from 'Heritage' red raspberry (Rubus idaeus) and 'Bristol' black raspberry (R. occidentalis) were utilized for RNA extraction. After conversion to cDNA and library construction, ESTs were sequenced, quality verified, assembled and scanned for SSRs.  Primers flanking the SSRs were designed and a subset tested for amplification, polymorphism and transferability across species. ESTs containing SSRs were functionally annotated using the GenBank non-redundant (nr) database and further classified using the gene ontology database. RESULTS: To accelerate development of EST-SSRs in the genus Rubus (Rosaceae), 1149 and 2358 cDNA sequences were generated from red raspberry and black raspberry, respectively. The cDNA sequences were screened using rigorous filtering criteria which resulted in the identification of 121 and 257 SSR loci for red and black raspberry, respectively. Primers were designed from the surrounding sequences resulting in 131 and 288 primer pairs, respectively, as some sequences contained more than one SSR locus. Sequence analysis revealed that the SSR-containing genes span a diversity of functions and share more sequence identity with strawberry genes than with other Rosaceous species. CONCLUSION: This resource of Rubus-specific, gene-derived markers will facilitate the construction of linkage maps composed of transferable markers for studying and manipulating important traits in this economically important genus.


Asunto(s)
Etiquetas de Secuencia Expresada , Biblioteca de Genes , Repeticiones de Microsatélite/genética , Rubus/genética , Bases de Datos Genéticas , Ontología de Genes , Marcadores Genéticos , Especificidad de la Especie
3.
Theor Appl Genet ; 128(8): 1631-46, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26037086

RESUMEN

KEY MESSAGE: We have constructed a densely populated, saturated genetic linkage map of black raspberry and successfully placed a locus for aphid resistance. Black raspberry (Rubus occidentalis L.) is a high-value crop in the Pacific Northwest of North America with an international marketplace. Few genetic resources are readily available and little improvement has been achieved through breeding efforts to address production challenges involved in growing this crop. Contributing to its lack of improvement is low genetic diversity in elite cultivars and an untapped reservoir of genetic diversity from wild germplasm. In the Pacific Northwest, where most production is centered, the current standard commercial cultivar is highly susceptible to the aphid Amphorophora agathonica Hottes, which is a vector for the Raspberry mosaic virus complex. Infection with the virus complex leads to a rapid decline in plant health resulting in field replacement after only 3-4 growing seasons. Sources of aphid resistance have been identified in wild germplasm and are used to develop mapping populations to study the inheritance of these valuable traits. We have constructed a genetic linkage map using single-nucleotide polymorphism and transferable (primarily simple sequence repeat) markers for F1 population ORUS 4305 consisting of 115 progeny that segregate for aphid resistance. Our linkage map of seven linkage groups representing the seven haploid chromosomes of black raspberry consists of 274 markers on the maternal map and 292 markers on the paternal map including a morphological locus for aphid resistance. This is the first linkage map of black raspberry and will aid in developing markers for marker-assisted breeding, comparative mapping with other Rubus species, and enhancing the black raspberry genome assembly.


Asunto(s)
Áfidos , Mapeo Cromosómico , Ligamiento Genético , Rubus/genética , Animales , Cruzamiento , Cromosomas de las Plantas , ADN de Plantas/genética , Marcadores Genéticos , Genética de Población , Herbivoria , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple
4.
Genes (Basel) ; 13(3)2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35327972

RESUMEN

U.S. black raspberry (BR) production is currently limited by narrowly adapted, elite germplasm. An improved understanding of genetic control and the stability of pomological traits will inform the development of improved BR germplasm and cultivars. To this end, the analysis of a multiple-environment trial of a BR mapping population derived from a cross that combines wild ancestors introgressed with commercial cultivars on both sides of its pedigree has provided insights into genetic variation, genotype-by-environment interactions, quantitative trait loci (QTL), and QTL-by-environment interactions (QEI) of fruit quality traits among diverse field environments. The genetic components and stability of four fruit size traits and six fruit biochemistry traits were characterized in this mapping population following their evaluation over three years at four distinct locations representative of current U.S. BR production. This revealed relatively stable genetic control of the four fruit size traits across the tested production environments and less stable genetic control of the fruit biochemistry traits. Of the fifteen total QTL, eleven exhibited significant QEI. Closely overlapping QTL revealed the linkage of several fruit size traits: fruit mass, drupelet count, and seed fraction. These and related findings are expected to guide further genetic characterization of BR fruit quality, management of breeding germplasm, and development of improved BR cultivars for U.S. production.


Asunto(s)
Rubus , Mapeo Cromosómico , Ligamiento Genético , Fitomejoramiento , Sitios de Carácter Cuantitativo , Rubus/genética
5.
BMC Evol Biol ; 11: 9, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21226921

RESUMEN

BACKGROUND: Comparative genome mapping studies in Rosaceae have been conducted until now by aligning genetic maps within the same genus, or closely related genera and using a limited number of common markers. The growing body of genomics resources and sequence data for both Prunus and Fragaria permits detailed comparisons between these genera and the recently released Malus × domestica genome sequence. RESULTS: We generated a comparative analysis using 806 molecular markers that are anchored genetically to the Prunus and/or Fragaria reference maps, and physically to the Malus genome sequence. Markers in common for Malus and Prunus, and Malus and Fragaria, respectively were 784 and 148. The correspondence between marker positions was high and conserved syntenic blocks were identified among the three genera in the Rosaceae. We reconstructed a proposed ancestral genome for the Rosaceae. CONCLUSIONS: A genome containing nine chromosomes is the most likely candidate for the ancestral Rosaceae progenitor. The number of chromosomal translocations observed between the three genera investigated was low. However, the number of inversions identified among Malus and Prunus was much higher than any reported genome comparisons in plants, suggesting that small inversions have played an important role in the evolution of these two genera or of the Rosaceae.


Asunto(s)
Evolución Molecular , Genoma de Planta , Rosaceae/genética , Mapeo Cromosómico , Fragaria/genética , Proteínas de Plantas/genética , Prunus/genética
6.
Front Plant Sci ; 10: 1615, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921259

RESUMEN

Rubus (Rosaceae) comprises more than 500 species with additional commercially cultivated raspberries and blackberries. The most recent (> 100 years old) global taxonomic treatment of the genus defined 12 subgenera; two subgenera were subsequently described and some species were rearranged. Intra- and interspecific ploidy levels and hybridization make phylogenetic estimation of Rubus challenging. Our objectives were to estimate the phylogeny of 94 taxonomically and geographically diverse species and three cultivars using chloroplast DNA sequences and target capture of approximately 1,000 low copy nuclear genes; estimate divergence times between major Rubus clades; and examine the historical biogeography of species diversification. Target capture sequencing identified eight major groups within Rubus. Subgenus Orobatus and Subg. Anoplobatus were monophyletic, while other recognized subgenera were para- or polyphyletic. Multiple hybridization events likely occurred across the phylogeny at subgeneric levels, e.g., Subg. Rubus (blackberries) × Subg. Idaeobatus (raspberries) and Subg. Idaeobatus × Subg. Cylactis (Arctic berries) hybrids. The raspberry heritage within known cultivated blackberry hybrids was confirmed. The most recent common ancestor of the genus was most likely distributed in North America. Multiple distribution events occurred during the Miocene (about 20 Ma) from North America into Asia and Europe across the Bering land bridge and southward crossing the Panamanian Isthmus. Rubus species diversified greatly in Asia during the Miocene. Rubus taxonomy does not reflect phylogenetic relationships and subgeneric revision is warranted. The most recent common ancestor migrated from North America towards Asia, Europe, and Central and South America early in the Miocene then diversified. Ancestors of the genus Rubus may have migrated to Oceania by long distance bird dispersal. This phylogeny presents a roadmap for further Rubus systematics research. In conclusion, the target capture dataset provides high resolution between species though it also gave evidence of gene tree/species tree and cytonuclear discordance. Discordance may be due to hybridization or incomplete lineage sorting, rather than a lack of phylogenetic signal. This study illustrates the importance of using multiple phylogenetic methods when examining complex groups and the utility of software programs that estimate signal conflict within datasets.

7.
Hortic Res ; 5: 8, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29423238

RESUMEN

Black raspberry (Rubus occidentalis L.) is a niche fruit crop valued for its flavor and potential health benefits. The improvement of fruit and cane characteristics via molecular breeding technologies has been hindered by the lack of a high-quality reference genome. The recently released draft genome for black raspberry (ORUS 4115-3) lacks assembly of scaffolds to chromosome scale. We used high-throughput chromatin conformation capture (Hi-C) and Proximity-Guided Assembly (PGA) to cluster and order 9650 out of 11,936 contigs of this draft genome assembly into seven pseudo-chromosomes. The seven pseudo-chromosomes cover ~97.2% of the total contig length (~223.8 Mb). Locating existing genetic markers on the physical map resolved multiple discrepancies in marker order on the genetic map. Centromeric regions were inferred from recombination frequencies of genetic markers, alignment of 303 bp centromeric sequence with the PGA, and heat map showing the physical contact matrix over the entire genome. We demonstrate a high degree of synteny between each of the seven chromosomes of black raspberry and a high-quality reference genome for strawberry (Fragaria vesca L.) assembled using only PacBio long-read sequences. We conclude that PGA is a cost-effective and rapid method of generating chromosome-scale assemblies from Illumina short-read sequencing data.

8.
Gigascience ; 7(8)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30107523

RESUMEN

Background: The fragmented nature of most draft plant genomes has hindered downstream gene discovery, trait mapping for breeding, and other functional genomics applications. There is a pressing need to improve or finish draft plant genome assemblies. Findings: Here, we present a chromosome-scale assembly of the black raspberry genome using single-molecule real-time Pacific Biosciences sequencing and high-throughput chromatin conformation capture (Hi-C) genome scaffolding. The updated V3 assembly has a contig N50 of 5.1 Mb, representing an ∼200-fold improvement over the previous Illumina-based version. Each of the 235 contigs was anchored and oriented into seven chromosomes, correcting several major misassemblies. Black raspberry V3 contains 47 Mb of new sequences including large pericentromeric regions and thousands of previously unannotated protein-coding genes. Among the new genes are hundreds of expanded tandem gene arrays that were collapsed in the Illumina-based assembly. Detailed comparative genomics with the high-quality V4 woodland strawberry genome (Fragaria vesca) revealed near-perfect 1:1 synteny with dramatic divergence in tandem gene array composition. Lineage-specific tandem gene arrays in black raspberry are related to agronomic traits such as disease resistance and secondary metabolite biosynthesis. Conclusions: The improved resolution of tandem gene arrays highlights the need to reassemble these highly complex and biologically important regions in draft plant genomes. The updated, high-quality black raspberry reference genome will be useful for comparative genomics across the horticulturally important Rosaceae family and enable the development of marker assisted breeding in Rubus.


Asunto(s)
Genoma de Planta , Rubus/genética , Análisis de Secuencia de ADN , Cromosomas de las Plantas , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA