Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Cell Biol ; 119(6): 1459-68, 1992 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-1469044

RESUMEN

We have investigated the localization of Kex1p, a type I transmembrane carboxypeptidase involved in precursor processing within the yeast secretory pathway. Indirect immunofluorescence demonstrated the presence of Kex1p in a punctate organelle resembling the yeast Golgi apparatus as identified by Kex2p and Sec7p (Franzusoff, A., K. Redding, J. Crosby, R. S. Fuller, and R. Schekman. 1991. J. Cell Biol. 112:27-37). Glycosylation studies of Kex1p were consistent with a Golgi location, as Kex1p was progressively N-glycosylated in an MNN1-dependent manner. To address the basis of Kex1p targeting to the Golgi apparatus, we examined the cellular location of a series of carboxy-terminal truncations of the protein. The results indicate that a cytoplasmically exposed carboxy-terminal domain is required for retention of this membrane protein within the Golgi apparatus. Deletions of the retention region or overproduction of wild-type Kex1p led to mislocalization of Kex1p to the vacuolar membrane. This unexpected finding is discussed in terms of models involving either the vacuole as a default destination for membrane proteins, or by endocytosis to the vacuole following their default localization to the plasma membrane.


Asunto(s)
Carboxipeptidasas/metabolismo , Aparato de Golgi/metabolismo , Saccharomyces cerevisiae/genética , Vacuolas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , Secuencia de Carbohidratos , Carboxipeptidasas/genética , Carboxipeptidasas/aislamiento & purificación , Compartimento Celular , Análisis Mutacional de ADN , Técnica del Anticuerpo Fluorescente , Glicosilación , Factores Asesinos de Levadura , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Micotoxinas/genética , Micotoxinas/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes , Proteínas de Saccharomyces cerevisiae
2.
J Cell Biol ; 127(2): 567-79, 1994 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-7929594

RESUMEN

A characterization of the S. cerevisiae KRE6 and SKN1 gene products extends previous genetic studies on their role in (1-->6)-beta-glucan biosynthesis (Roemer, T., and H. Bussey. 1991. Yeast beta-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc. Natl. Acad. Sci. USA. 88:11295-11299; Roemer, T., S. Delaney, and H. Bussey. 1993. SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in beta-glucan synthesis. Mol. Cell. Biol. 13:4039-4048). KRE6 and SKN1 are predicted to encode homologous proteins that participate in assembly of the cell wall polymer (1-->6)-beta-glucan. KRE6 and SKN1 encode phosphorylated integral-membrane glycoproteins, with Kre6p likely localized within a Golgi subcompartment. Deletion of both these genes is shown to result in a dramatic disorganization of cell wall ultrastructure. Consistent with their direct role in the assembly of this polymer, both Kre6p and Skn1p possess COOH-terminal domains with significant sequence similarity to two recently identified glucan-binding proteins. Deletion of the yeast protein kinase C homolog, PKC1, leads to a lysis defect (Levin, D. E., and E. Bartlett-Heubusch. 1992. Mutants in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J. Cell Biol. 116:1221-1229). Kre6p when even mildly overproduced, can suppress this pkc1 lysis defect. When mutated, several KRE pathway genes and members of the PKC1-mediated MAP kinase pathway have synthetic lethal interactions as double mutants. These suppression and synthetic lethal interactions, as well as reduced beta-glucan and mannan levels in the pkc1 null wall, support a role for the PKC1 pathway functioning in cell wall assembly. PKC1 potentially participates in cell wall assembly by regulating the synthesis of cell wall components, including (1-->6)-beta-glucan.


Asunto(s)
Matriz Extracelular/metabolismo , Proteínas Fúngicas/genética , Glucanos/biosíntesis , Proteínas de la Membrana/genética , Proteína Quinasa C/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , beta-Glucanos , Secuencia de Aminoácidos , Secuencia de Bases , Pared Celular/metabolismo , Pared Celular/ultraestructura , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Aparato de Golgi/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteína Quinasa 1 Activada por Mitógenos , Datos de Secuencia Molecular , Fenotipo , Fosforilación , Proteína Quinasa C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Homología de Secuencia de Aminoácido
3.
J Cell Biol ; 110(5): 1833-43, 1990 May.
Artículo en Inglés | MEDLINE | ID: mdl-2186051

RESUMEN

The Saccharomyces cerevisiae KRE1 gene encodes a Ser/Thr-rich protein, that is directed into the yeast secretory pathway, where it is highly modified, probably through addition of O-linked mannose residues. Gene disruption of the KRE1 locus leads to a 40% reduced level of cell wall (1----6)-beta-glucan. Structural analysis of the (1----6)-beta-glucan fraction, isolated from a strain with a krel disruption mutation, showed that it had an altered structure with a smaller average polymer size. Mutations in two other loci, KRE5 and KRE6 also lead to a defect in cell wall (1----6)-beta-glucan production and appear to be epistatic to KRE1. These findings outline a possible pathway of assembly of yeast cell wall (1----6)-beta-glucan.


Asunto(s)
Proteínas Fúngicas/genética , Glucanos/metabolismo , Glicoproteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Pared Celular/metabolismo , Pared Celular/ultraestructura , Clonación Molecular , Microscopía Electrónica , Datos de Secuencia Molecular , Estructura Molecular , Mutación , Micotoxinas/farmacología , Señales de Clasificación de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
4.
J Cell Biol ; 131(4): 913-27, 1995 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-7490293

RESUMEN

The yeast Kre2p/Mnt1p alpha 1,2-mannosyltransferase is a type II membrane protein with a short cytoplasmic amino terminus, a membrane-spanning region, and a large catalytic luminal domain containing one N-glycosylation site. Anti-Kre2p/Mnt1p antibodies identify a 60-kD integral membrane protein that is progressively N-glycosylated in an MNN1-dependent manner. Kre2p/Mnt1p is localized in a Golgi compartment that overlaps with that containing the medial-Golgi mannosyltransferase Mnn1p, and distinct from that including the late Golgi protein Kex1p. To determine which regions of Kre2p/Mnt1p are required for Golgi localization, Kre2p/Mnt1p mutant proteins were assembled by substitution of Kre2p domains with equivalent sequences from the vacuolar proteins DPAP B and Pho8p. Chimeric proteins were tested for correct topology, in vitro and in vivo activity, and were localized intracellularly by indirect immunofluorescence. The results demonstrate that the NH2-terminal cytoplasmic domain is necessary for correct Kre2p Golgi localization whereas, the membrane-spanning and stem domains are dispensable. However, in a test of targeting sufficiency, the presence of the entire Kre2p cytoplasmic tail, plus the transmembrane domain and a 36-amino acid residue luminal stem region was required to localize a Pho8p reporter protein to the yeast Golgi.


Asunto(s)
Aparato de Golgi/enzimología , Manosiltransferasas/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Compartimento Celular/fisiología , Retículo Endoplásmico/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Glicosilación , Manosiltransferasas/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Sondas de Oligonucleótidos/química , Biosíntesis de Proteínas/fisiología , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
5.
J Cell Biol ; 128(3): 333-40, 1995 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-7844147

RESUMEN

The cell adhesion protein alpha-agglutinin is bound to the outer surface of the Saccharomyces cerevisiae cell wall and mediates cell-cell contact in mating. alpha-Agglutinin is modified by addition of a glycosyl phosphatidylinositol (GPI) anchor as it traverses the secretory pathway. The presence of a GPI anchor is essential for cross-linking into the wall, but the fatty acid and inositol components of the anchor are lost before cell wall association (Lu, C.-F., J. Kurjan, and P. N. Lipke, 1994. A pathway for cell wall anchorage of Saccharomyces cerevisiae alpha-agglutinin. Mol. Cell. Biol. 14:4825-4833). Cell wall association of alpha-agglutinin was accompanied by an increase in size and a gain in reactivity to antibodies directed against beta 1,6-glucan. Several kre mutants, which have defects in synthesis of cell wall beta 1,6-glucan, had reduced molecular size of cell wall alpha-agglutinin. These findings demonstrate that the cell wall form of alpha-agglutinin is covalently associated with beta 1,6-glucan. The alpha-agglutinin biosynthetic precursors did not react with antibody to beta 1,6-glucan, and the sizes of these forms were unaffected in kre mutants. A COOH-terminal truncated form of alpha-agglutinin, which is not GPI anchored and is secreted into the medium, did not react with the anti-beta 1,6-glucan. We propose that extracellular cross-linkage to beta 1,6-glucan mediates covalent association of alpha-agglutinin with the cell wall in a manner that is dependent on prior addition of a GPI anchor to alpha-agglutinin.


Asunto(s)
Glucanos/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Péptidos/metabolismo , Saccharomyces cerevisiae/metabolismo , beta-Glucanos , Anticuerpos/inmunología , Adhesión Celular , Pared Celular/metabolismo , Glucanos/inmunología , Factor de Apareamiento , Mutación , Tamaño de la Partícula
6.
Science ; 275(5302): 980-3, 1997 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-9020081

RESUMEN

Mutations in the Caenorhabditis elegans gene clk-1 affect biological timing and extend longevity. The gene clk-1 was identified, and the cloned gene complemented the clk-1 phenotypes and restored normal longevity. The CLK-1 protein was found to be conserved among eukaryotes, including humans, and structurally similar to the yeast metabolic regulator Cat5p (also called Coq7p). These proteins contain a tandem duplication of a core 82-residue domain. clk-1 complemented the phenotype of cat5/coq7 null mutants, demonstrating that clk-1 and CAT5/COQ7 share biochemical function and that clk-1 acts at the level of cellular physiology.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Senescencia Celular/genética , Genes de Helminto , Proteínas del Helminto/genética , Proteínas de Saccharomyces cerevisiae , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/metabolismo , Mapeo Cromosómico , Secuencia Conservada , Exones , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Prueba de Complementación Genética , Glicerol/metabolismo , Proteínas del Helminto/química , Proteínas del Helminto/fisiología , Humanos , Longevidad/genética , Ratones , Datos de Secuencia Molecular , Fenotipo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Empalme del ARN
7.
Science ; 294(5550): 2364-8, 2001 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-11743205

RESUMEN

In Saccharomyces cerevisiae, more than 80% of the approximately 6200 predicted genes are nonessential, implying that the genome is buffered from the phenotypic consequences of genetic perturbation. To evaluate function, we developed a method for systematic construction of double mutants, termed synthetic genetic array (SGA) analysis, in which a query mutation is crossed to an array of approximately 4700 deletion mutants. Inviable double-mutant meiotic progeny identify functional relationships between genes. SGA analysis of genes with roles in cytoskeletal organization (BNI1, ARP2, ARC40, BIM1), DNA synthesis and repair (SGS1, RAD27), or uncharacterized functions (BBC1, NBP2) generated a network of 291 interactions among 204 genes. Systematic application of this approach should produce a global map of gene function.


Asunto(s)
Proteínas del Citoesqueleto , Eliminación de Gen , Genes Fúngicos/fisiología , Técnicas Genéticas , Proteínas de Microfilamentos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Polaridad Celular , Biología Computacional , Cruzamientos Genéticos , Citoesqueleto/fisiología , ADN Helicasas/genética , ADN Helicasas/fisiología , Reparación del ADN , ADN de Hongos/biosíntesis , Bases de Datos Genéticas , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/fisiología , Endonucleasas de ADN Solapado , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Genes Esenciales , Marcadores Genéticos , Genoma Fúngico , Proteínas de Microtúbulos/genética , Proteínas de Microtúbulos/fisiología , Mitosis , RecQ Helicasas , Recombinación Genética , Robótica , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
8.
Science ; 274(5287): 546, 563-7, 1996 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-8849441

RESUMEN

The genome of the yeast Saccharomyces cerevisiae has been completely sequenced through a worldwide collaboration. The sequence of 12,068 kilobases defines 5885 potential protein-encoding genes, approximately 140 genes specifying ribosomal RNA, 40 genes for small nuclear RNA molecules, and 275 transfer RNA genes. In addition, the complete sequence provides information about the higher order organization of yeast's 16 chromosomes and allows some insight into their evolutionary history. The genome shows a considerable amount of apparent genetic redundancy, and one of the major problems to be tackled during the next stage of the yeast genome project is to elucidate the biological functions of all of these genes.


Asunto(s)
Mapeo Cromosómico , Genes Fúngicos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Cromosomas Fúngicos/genética , Redes de Comunicación de Computadores , ADN de Hongos/genética , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Biblioteca de Genes , Cooperación Internacional , Familia de Multigenes , Sistemas de Lectura Abierta , ARN de Hongos/genética , Análisis de Secuencia de ADN
9.
Science ; 285(5429): 901-6, 1999 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-10436161

RESUMEN

The functions of many open reading frames (ORFs) identified in genome-sequencing projects are unknown. New, whole-genome approaches are required to systematically determine their function. A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome). Of the deleted ORFs, 17 percent were essential for viability in rich medium. The phenotypes of more than 500 deletion strains were assayed in parallel. Of the deletion strains, 40 percent showed quantitative growth defects in either rich or minimal medium.


Asunto(s)
Eliminación de Gen , Genes Esenciales , Genoma Fúngico , Sistemas de Lectura Abierta , Saccharomyces cerevisiae/genética , Medios de Cultivo , Regulación Fúngica de la Expresión Génica , Marcación de Gen , Genes Fúngicos , Fenotipo , Reacción en Cadena de la Polimerasa , Recombinación Genética , Saccharomyces cerevisiae/crecimiento & desarrollo
10.
Mol Cell Biol ; 9(6): 2706-14, 1989 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2668738

RESUMEN

We have identified and partially characterized the Saccharomyces cerevisiae KEX1 gene product, Kex1p, to assess its role in processing secreted protein precursors. Anti-Kex1p antibodies identified a 113-kilodalton protein that was absent in cells in which the KEX1 gene has been disrupted and that was more abundant in cells overexpressing the KEX1 gene. Kex1p was found to be a membrane-associated glycoprotein with N-linked carbohydrate. The N-linked oligosaccharide(s) was modified in a progressive manner after synthesis, causing the glycoprotein to slowly increase in mass to 115 kilodaltons. After a Kex2p-mediated cleavage event at specific pairs of basic amino acids, alpha-factor and K1 killer toxin precursors have COOH-terminal dibasic residue extensions and require a carboxypeptidase B-like enzyme to process the precursors to maturity. A carboxypeptidase activity, with apparent specificity for basic amino acids, was detected in KEX1 cells. Disruption of the KEX1 gene abolished this activity, while overexpression of KEX1 increased it. Our results provide biochemical evidence consistent with earlier genetic work, that KEX1 encodes a serine carboxypeptidase involved in the processing of precursors to secreted mature proteins.


Asunto(s)
Carboxipeptidasas/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/enzimología , Secuencia de Bases , Unión Competitiva , Carboxipeptidasas/metabolismo , Catepsina A , Centrifugación , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Factores Asesinos de Levadura , Factor de Apareamiento , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Micotoxinas/metabolismo , Péptidos/metabolismo , Pruebas de Precipitina , ARN Mensajero/metabolismo , ARN Mensajero/fisiología , Reproducción Asexuada , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Especificidad por Sustrato
11.
Mol Cell Biol ; 11(1): 175-81, 1991 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-1702512

RESUMEN

To determine the functional domains of K1 killer toxin, we analyzed the phenotypes of a set of mutations throughout regions encoding the alpha- and beta-toxin subunits that allow secretion of mutant toxins. A range of techniques have been used to examine the ability of mutant toxins to bind to beta-glucan cell wall receptor and to form lethal ion channels. Our results indicate that both the alpha and beta subunits are involved in beta-glucan receptor binding. Defects in ion channel formation and toxin immunity are confined to the hydrophobic alpha subunit of the toxin.


Asunto(s)
Canales Iónicos/genética , Micotoxinas/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Pared Celular/metabolismo , Clonación Molecular , Análisis Mutacional de ADN , Proteínas Fúngicas/genética , Factores Asesinos de Levadura , Datos de Secuencia Molecular , Micotoxinas/metabolismo , Oligonucleótidos , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae , Relación Estructura-Actividad
12.
Mol Cell Biol ; 6(12): 4274-80, 1986 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-3540609

RESUMEN

A full-length cDNA of the M1 double-stranded RNA killer preprotoxin coding region successfully directed the synthesis of secreted K1 toxin when expressed in Saccharomyces cerevisiae from a plasmid vector. Three protein species immunoreactive with antitoxin antiserum were detected intracellularly in transformants harboring this killer cDNA plasmid. These toxin precursor species were characterized by using secretory-defective hosts, by comparative electrophoretic mobilities, and by tunicamycin susceptibility. Such studies indicate that these three protein species represent intermediates generated by signal cleavage of the preprotoxin and its subsequent glycosylation and provide evidence that these events occur posttranslationally.


Asunto(s)
Micotoxinas/genética , Procesamiento Proteico-Postraduccional , Señales de Clasificación de Proteína/metabolismo , Saccharomyces cerevisiae/genética , Clonación Molecular , ADN/metabolismo , Retículo Endoplásmico/metabolismo , Factores Asesinos de Levadura , Mutación , Micotoxinas/biosíntesis , Plásmidos , Saccharomyces cerevisiae/metabolismo
13.
Mol Cell Biol ; 13(7): 4039-48, 1993 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8321211

RESUMEN

KRE6 encodes a predicted type II membrane protein which, when disrupted, results in a slowly growing, killer toxin-resistant mutant possessing half the normal level of a structurally wild-type cell wall (1-->6)-beta-glucan (T. Roemer and H. Bussey, Proc. Natl. Acad. Sci. USA 88:11295-11299, 1991). The mutant phenotype and structure of the KRE6 gene product, Kre6p, suggest that it may be a beta-glucan synthase component, implying that (1-->6)-beta-glucan synthesis in Saccharomyces cerevisiae is functionally redundant. To examine this possibility, we screened a multicopy genomic library for suppression of both the slow-growth and killer resistance phenotypes of a kre6 mutant and identified SKN1, which encodes a protein sharing 66% overall identity to Kre6p. SKN1 suppresses kre6 null alleles in a dose-dependent manner, though disruption of the SKN1 locus has no effect on killer sensitivity, growth, or (1-->6)-beta-glucan levels. skn1 kre6 double disruptants, however, showed a dramatic reduction in both (1-->6)-beta-glucan levels and growth rate compared with either single disruptant. Moreover, the residual (1-->6)-beta-glucan polymer in skn1 kre6 double mutants is smaller in size and altered in structure. Since single disruptions of these genes lead to structurally wild-type (1-->6)-beta-glucan polymers, Kre6p and Skn1p appear to function independently, possibly in parallel, in (1-->6)-beta-glucan biosynthesis.


Asunto(s)
Proteínas Fúngicas/genética , Glucanos/biosíntesis , Proteínas de la Membrana/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Clonación Molecular , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Fenotipo , Mapeo Restrictivo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Supresión Genética
14.
Mol Cell Biol ; 13(10): 6346-56, 1993 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8413233

RESUMEN

The yeast KRE9 gene encodes a 30-kDa secretory pathway protein involved in the synthesis of cell wall (1-->6)-beta-glucan. Disruption of KRE9 leads to serious growth impairment and an altered cell wall containing less than 20% of the wild-type amount of (1-->6)-beta-glucan. Analysis of the glucan material remaining in a kre9 delta null mutant indicated a polymer with a reduced average molecular mass. kre9 delta null mutants also displayed several additional cell-wall-related phenotypes, including an aberrant multiply budded morphology, a mating defect, and a failure to form projections in the presence of alpha-factor. Double mutants were generated by crossing kre9 delta strains with strains harboring a null mutation in the KRE1, KRE6, or KRE11 gene, and each of these double mutants was found to be inviable in the SEY6210 background. Similar crosses with null mutations in the KRE5 and SKN1 genes indicated that these double mutants were no more severely affected than kre5 delta or kre9 delta single mutants alone. Antibodies were generated against Kre9p and detected an O glycoprotein of approximately 55 to 60 kDa found in the extracellular medium of a strain overproducing Kre9p.


Asunto(s)
Proteínas Fúngicas/genética , Genes Fúngicos , Glicoproteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , beta-Glucanos , Secuencia de Aminoácidos , Secuencia de Bases , Southern Blotting , Western Blotting , Pared Celular , Cromatografía en Gel , Clonación Molecular , ADN de Hongos , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Glicoproteínas/metabolismo , Espectroscopía de Resonancia Magnética , Factor de Apareamiento , Datos de Secuencia Molecular , Péptidos/metabolismo , Feromonas/metabolismo , Mapeo Restrictivo
15.
Mol Cell Biol ; 2(4): 346-54, 1982 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-7050670

RESUMEN

M double-stranded RNA (MdsRNA) plasmid mutants were obtained by mutagenesis and screening of a diploid killer culture partially heat cured of the plasmid, so that a high proportion of the cells could be expected to have only on M plasmid. Mutants with neutral (nonkiller [K-], immune [R+]) or suicide (killer [K+], sensitive [R-] phenotypes were examined. All mutants became K- R- sensitives on heat curing of the MdsRNA plasmid, and showed cytoplasmic inheritance by random spore analysis. In some cases, M plasmid mutations were indicated by altered mobility of the MdsRNA by agarose gel electrophoresis or by altered size of in vitro translation products from denatured dsRNA. Neutral mutants were of two types: nonsecretors of the toxin protein or secretors of an inactive toxin. Of three neutral nonsecretors examined, one (NLP-1), probably a nonsense mutation, made a smaller protoxin precursor in vitro and in vivo, and two made full-size protoxin molecules. The in vivo protoxin of 43,000 molecular weight was unstable in the wild type and kinetically showed a precursor-product relationship to the processed, secreted 11,000-molecular-weight toxin. In one nonsecretor (N1), the protoxin appeared more stable in a pulse-chase experiment, and could be altered in a recognition site required for protein processing.


Asunto(s)
Mutación , Plásmidos , ARN Bicatenario/genética , Saccharomyces cerevisiae/genética , Toxinas Biológicas/genética , Calor , Inmunidad , Peso Molecular , Fenotipo , Precursores de Proteínas/metabolismo , ARN Bicatenario/análisis , Toxinas Biológicas/metabolismo
16.
Mol Cell Biol ; 3(8): 1362-70, 1983 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-6353202

RESUMEN

Killer toxin secretion was blocked at the restrictive temperature in Saccharomyces cerevisiae sec mutants with conditional defects in the S. cerevisiae secretory pathway leading to accumulation of endoplasmic reticulum (sec18), Golgi (sec7), or secretory vesicles (sec1). A 43,000-molecular-weight (43K) glycosylated protoxin was found by pulse-labeling in all sec mutants at the restrictive temperature. In sec18 the protoxin was stable after a chase; but in sec7 and sec1 the protoxin was unstable, and in sec1 11K toxin was detected in cell lysates. The chymotrypsin inhibitor tosyl-l-phenylalanyl chloromethyl ketone (TPCK) blocked toxin secretion in vivo in wild-type cells by inhibiting protoxin cleavage. The unstable protoxin in wild-type and in sec7 and sec1 cells at the restrictive temperature was stabilized by TPCK, suggesting that the protoxin cleavage was post-sec18 and was mediated by a TPCK-inhibitable protease. Protoxin glycosylation was inhibited by tunicamycin, and a 36K protoxin was detected in inhibited cells. This 36K protoxin was processed, but toxin secretion was reduced 10-fold. We examined two kex mutants defective in toxin secretion; both synthesized a 43K protoxin, which was stable in kex1 but unstable in kex2. Protoxin stability in kex1 kex2 double mutants indicated the order kex1 --> kex2 in the protoxin processing pathway. TPCK did not block protoxin instability in kex2 mutants. This suggested that the KEX1- and KEX2-dependent steps preceded the sec7 Golgi block. We attempted to localize the protoxin in S. cerevisiae cells. Use of an in vitro rabbit reticulocyte-dog pancreas microsomal membrane system indicated that protoxin synthesized in vitro could be inserted into and glycosylated by the microsomal membranes. This membrane-associated protoxin was protected from trypsin proteolysis. Pulse-chased cells or spheroplasts, with or without TPCK, failed to secrete protoxin. The protoxin may not be secreted into the lumen of the endoplasmic reticulum, but may remain membrane associated and may require endoproteolytic cleavage for toxin secretion.


Asunto(s)
Micotoxinas/metabolismo , Saccharomyces cerevisiae/fisiología , Factores Asesinos de Levadura , Proteínas de la Membrana/metabolismo , Peso Molecular , Mutación , Micotoxinas/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae , Tasa de Secreción/efectos de los fármacos , Clorometilcetona de Tosilfenilalanila/farmacología , Tunicamicina/farmacología
17.
Mol Cell Biol ; 10(6): 3013-9, 1990 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-2188106

RESUMEN

Yeast kre mutants define a pathway of cell wall (1----6)-beta-D-glucan synthesis, and mutants in genes KRE5 and KRE6 appear to interact early in such a pathway. We have cloned KRE5, and the sequence predicts the product to be a large, hydrophilic, secretory glycoprotein which contains the COOH-terminal endoplasmic reticulum retention signal, HDEL. Deletion of the KRE5 gene resulted in cells with aberrant morphology and extremely compromised growth. Suppressors to the KRE5 deletions arose at a frequency of 1 in 10(7) to 1 in 10(8) and permitted an analysis of deletions which were found to contain no alkali-insoluble (1----6)-beta-D-glucan. These results indicate a role for (1----6)-beta-D-glucan in normal cell growth and suggest a model for sequential assembly of (1----6)-beta-D-glucan in the yeast secretory pathway.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Glucanos/biosíntesis , Glicoproteínas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , beta-Glucanos , Secuencia de Aminoácidos , Secuencia de Bases , Pared Celular/metabolismo , Deleción Cromosómica , Clonación Molecular , ADN de Hongos/genética , ADN de Hongos/aislamiento & purificación , Escherichia coli/genética , Genotipo , Datos de Secuencia Molecular , Mutación , Plásmidos , Mapeo Restrictivo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
18.
Mol Biol Cell ; 12(8): 2497-518, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11514631

RESUMEN

The bipolar budding pattern of a/alpha Saccharomyces cerevisiae cells appears to depend on persistent spatial markers in the cell cortex at the two poles of the cell. Previous analysis of mutants with specific defects in bipolar budding identified BUD8 and BUD9 as potentially encoding components of the markers at the poles distal and proximal to the birth scar, respectively. Further genetic analysis reported here supports this hypothesis. Mutants deleted for BUD8 or BUD9 grow normally but bud exclusively from the proximal and distal poles, respectively, and the double-mutant phenotype suggests that the bipolar budding pathway has been totally disabled. Moreover, overexpression of these genes can cause either an increased bias for budding at the distal (BUD8) or proximal (BUD9) pole or a randomization of bud position, depending on the level of expression. The structures and localizations of Bud8p and Bud9p are also consistent with their postulated roles as cortical markers. Both proteins appear to be integral membrane proteins of the plasma membrane, and they have very similar overall structures, with long N-terminal domains that are both N- and O-glycosylated followed by a pair of putative transmembrane domains surrounding a short hydrophilic domain that is presumably cytoplasmic. The putative transmembrane and cytoplasmic domains of the two proteins are very similar in sequence. When Bud8p and Bud9p were localized by immunofluorescence and tagging with GFP, each protein was found predominantly in the expected location, with Bud8p at presumptive bud sites, bud tips, and the distal poles of daughter cells and Bud9p at the necks of large-budded cells and the proximal poles of daughter cells. Bud8p localized approximately normally in several mutants in which daughter cells are competent to form their first buds at the distal pole, but it was not detected in a bni1 mutant, in which such distal-pole budding is lost. Surprisingly, Bud8p localization to the presumptive bud site and bud tip also depends on actin but is independent of the septins.


Asunto(s)
Polaridad Celular/fisiología , Proteínas Fúngicas/metabolismo , Glicoproteínas de Membrana , Proteínas de la Membrana/metabolismo , Saccharomyces cerevisiae/fisiología , Actinas/metabolismo , Secuencia de Aminoácidos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Fraccionamiento Celular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genes Reporteros , Immunoblotting , Proteínas de la Membrana/genética , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Tiazoles/farmacología , Tiazolidinas
19.
Oncogene ; 20(38): 5279-90, 2001 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-11536041

RESUMEN

The E4orf4 protein of human adenovirus induces p53-independent apoptosis, a process that may promote cell death and viral spread. When expressed alone, E4orf4 kills transformed cells but not normal human cells. The only clear target of E4orf4 in mammalian cells is the Balpha (B55) subunit of protein phosphatase 2A (PP2A), a member of one of three classes of regulatory B subunits. Here we report the effects of E4orf4 in Saccharomyces cerevisiae, which encodes two PP2A regulatory B subunits, CDC55 and RTS1, that share homology with mammalian B and B' subunits, respectively. E4orf4 expression was found to be toxic in yeast, resulting in the accumulation of cells in G2/M phase that failed to grow upon removal of E4orf4. E4orf4-expressing yeast also displayed an elongated cell morphology similar to cdc55 deletion strains. E4orf4 required CDC55 to elicit its effect, whereas RTS1 was dispensable. The recruitment of the PP2A holoenzyme by E4orf4 was entirely dependent on Cdc55. These studies indicate that E4orf4-induced apoptosis in mammalian cells and cell death in yeast require functional interactions with B-type subunits of PP2A. However, some inhibition of growth by E4orf4 was observed in the cdc55 strain and with an E4orf4 mutant that fails to interact with Cdc55, indicating that E4orf4 may possess a second Cdc55-independent function affecting cell growth.


Asunto(s)
Adenoviridae/genética , Proteínas de Ciclo Celular/metabolismo , Genes p53 , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción , Proteínas Virales/metabolismo , Proteínas Virales/toxicidad , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Western Blotting , División Celular , Línea Celular Transformada , Citometría de Flujo , Proteínas Fúngicas/metabolismo , Galactosa/farmacología , Glucosa/farmacología , Humanos , Mitosis , Fosforilación , Plásmidos/metabolismo , Mutación Puntual , Pruebas de Precipitina , Unión Proteica , Proteína Fosfatasa 2 , Proteínas Represoras/metabolismo , Factores de Tiempo
20.
Biochim Biophys Acta ; 1426(2): 323-34, 1999 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-9878809

RESUMEN

Glycosylation constitutes one of the most important of all the post-translational modifications and may have numerous effects on the function, structure, physical properties and targeting of particular proteins. Eukaryotic glycan structures are progressively elaborated in the secretory pathway. Following the addition of a core N-linked carbohydrate in the endoplasmic reticulum, glycoproteins move to the Golgi complex where the elongation of O-linked sugar chains and processing of complex N-linked oligosaccharide structures take place. In order to better define how such post-translational modifications occur, we have been studying the yeast KTR and MNN1 mannosyltransferase gene families. The KTR family contains nine members: KRE2, YUR1, KTR1, KTR2, KTR3, KTR4, KTR5, KTR6 and KTR7. The MNN1 family contains six members: MNN1, TTP1, YGL257c, YNR059w, YIL014w and YJL86w. In this review, we address protein structure, sequence similarities and enzymatic activity in the context of each gene family. In addition, a description of the known function of many family members in O- and N-linked glycosylation is included. Finally, the genetic interactions and functional redundancies within a gene family are also discussed.


Asunto(s)
Manosiltransferasas/genética , Glicoproteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Glicoproteínas/biosíntesis , Glicosilación , Datos de Secuencia Molecular , Nitrógeno/química , Oxígeno/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA