Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297968

RESUMEN

Vascular networks comprise endothelial cells and mural cells, which include pericytes and smooth muscle cells. To elucidate the mechanisms controlling mural cell recruitment during development and tissue regeneration, we studied zebrafish caudal fin arteries. Mural cells colonizing arteries proximal to the body wrapped around them, whereas those in more distal regions extended protrusions along the proximo-distal vascular axis. Both cell populations expressed platelet-derived growth factor receptor ß (pdgfrb) and the smooth muscle cell marker myosin heavy chain 11a (myh11a). Most wrapping cells in proximal locations additionally expressed actin alpha2, smooth muscle (acta2). Loss of Pdgfrb signalling specifically decreased mural cell numbers at the vascular front. Using lineage tracing, we demonstrate that precursor cells located in periarterial regions and expressing Pgdfrb can give rise to mural cells. Studying tissue regeneration, we did not find evidence that newly formed mural cells were derived from pre-existing cells. Together, our findings reveal conserved roles for Pdgfrb signalling in development and regeneration, and suggest a limited capacity of mural cells to self-renew or contribute to other cell types during tissue regeneration.


Asunto(s)
Miocitos del Músculo Liso , Pericitos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas , Proteínas de Pez Cebra , Pez Cebra , Animales , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Pericitos/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
Small ; 20(32): e2310781, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38488770

RESUMEN

Improving target versus off-target ratio in nanomedicine remains a major challenge for increasing drug bioavailability and reducing toxicity. Active targeting using ligands on nanoparticle surfaces is a key approach but has limited clinical success. A potential issue is the integration of targeting ligands also changes the physicochemical properties of nanoparticles (passive targeting). Direct studies to understand the mechanisms of active targeting and off-targeting in vivo are limited by the lack of suitable tools. Here, the biodistribution of a representative active targeting liposome is analyzed, modified with an apolipoprotein E (ApoE) peptide that binds to the low-density lipoprotein receptor (LDLR), using zebrafish embryos. The ApoE liposomes demonstrated the expected liver targeting effect but also accumulated in the kidney glomerulus. The ldlra-/- zebrafish is developed to explore the LDLR-specificity of ApoE liposomes. Interestingly, liver targeting depends on the LDLR-specific interaction, while glomerular accumulation is independent of LDLR and peptide sequence. It is found that cationic charges of peptides and the size of liposomes govern glomerular targeting. Increasing the size of ApoE liposomes can avoid this off-targeting. Taken together, the study shows the potential of the zebrafish embryo model for understanding active and passive targeting mechanisms, that can be used to optimize the design of nanoparticles.


Asunto(s)
Apolipoproteínas E , Liposomas , Péptidos , Receptores de LDL , Pez Cebra , Animales , Liposomas/química , Receptores de LDL/metabolismo , Péptidos/química , Apolipoproteínas E/metabolismo , Embrión no Mamífero/metabolismo , Nanopartículas/química
3.
Glia ; 70(1): 35-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34487573

RESUMEN

Brain lymphatic endothelial cells (BLECs) constitute a group of loosely connected endothelial cells that reside within the meningeal layer of the zebrafish brain without forming a vascular tubular system. BLECs have been shown to readily endocytose extracellular cargo molecules from the brain parenchyma, however, their functional relevance in relation to microglia remains enigmatic. We here compare their functional uptake efficiency for several macromolecules and bacterial components with microglia in a qualitative and quantitative manner in 5-day-old zebrafish embryos. We find BLECs to be significantly more effective in the uptake of proteins, polysaccharides and virus particles as compared to microglia, while larger particles like bacteria are only ingested by microglia but not by BLECs, implying a clear distribution of tasks between the two cell types in the brain area. In addition, we compare BLECs to the recently discovered scavenger endothelial cells (SECs) of the cardinal vein and find them to accept an identical set of substrate molecules. Our data identifies BLECs as the first brain-associated SEC population in vertebrates, and demonstrates that BLECs cooperate with microglia to remove particle waste from the brain.


Asunto(s)
Células Endoteliales , Microglía , Animales , Encéfalo/metabolismo , Células Endoteliales/metabolismo , Meninges , Pez Cebra
4.
Small ; 18(18): e2107768, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35355412

RESUMEN

Formulations based on ionizable amino-lipids have been put into focus as nucleic acid delivery systems. Recently, the in vitro efficacy of the lipid formulation OH4:DOPE has been explored. However, in vitro performance of nanomedicines cannot correctly predict in vivo efficacy, thereby considerably limiting pre-clinical translation. This is further exacerbated by limited access to mammalian models. The present work proposes to close this gap by investigating in vivo nucleic acid delivery within simpler models, but which still offers physiologically complex environments and also adheres to the 3R guidelines (replace/reduce/refine) to improve animal experiments. The efficacy of OH4:DOPE as a delivery system for nucleic acids is demonstrated using in vivo approaches. It is shown that the formulation is able to transfect complex tissues using the chicken chorioallantoic membrane model. The efficacy of DNA and mRNA lipoplexes is tested extensively in the zebra fish (Danio rerio) embryo which allows the screening of biodistribution and transfection efficiency. Effective transfection of blood vessel endothelial cells is seen, especially in the endocardium. Both model systems allow an efficacy screening according to the 3R guidelines bypassing the in vitro-in vivo gap. Pilot studies in mice are performed to correlate the efficacy of in vivo transfection.


Asunto(s)
Ácidos Nucleicos , Animales , Células Endoteliales , Lípidos , Liposomas , Mamíferos , Ratones , Nanoestructuras , Péptidos , Distribución Tisular , Transfección
5.
Nanomedicine ; 34: 102395, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33838334

RESUMEN

Clearance of nanoparticles (NPs) after intravenous injection - mainly by the liver - is a critical barrier for the clinical translation of nanomaterials. Physicochemical properties of NPs are known to influence their distribution through cell-specific interactions; however, the molecular mechanisms responsible for liver cellular NP uptake are poorly understood. Liver sinusoidal endothelial cells and Kupffer cells are critical participants in this clearance process. Here we use a zebrafish model for liver-NP interaction to identify the endothelial scavenger receptor Stabilin-1 as a non-redundant receptor for the clearance of small anionic NPs. Furthermore, we show that physiologically, Stabilin-1 is required for the removal of bacterial lipopolysaccharide (LPS/endotoxin) from circulation and that Stabilin-1 cooperates with its homolog Stabilin-2 in the clearance of larger (~100 nm) anionic NPs. Our findings allow optimization of anionic nanomedicine biodistribution and targeting therapies that use Stabilin-1 and -2 for liver endothelium-specific delivery.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Endotelio/metabolismo , Nanopartículas , Proteínas de Pez Cebra/fisiología , Animales , Aniones , Proteínas de Unión al Calcio/genética , Técnicas de Silenciamiento del Gen , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
6.
Biomacromolecules ; 21(3): 1060-1068, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32083854

RESUMEN

Supramolecular polymers are attractive scaffolds for use as nanocarriers in drug delivery thanks to their modularity and easy fabrication; however, a molecular view into their in vivo behavior is lacking. Herein, we prepare fluorescent squaramide-based supramolecular polymer nanoparticles that range from fibers to spheres while maintaining their surface chemistry and near-neutral surface charge by a co-assembly approach involving a sulfo-cyanine-labeled monomer to track their in vivo biodistribution behavior and clearance in optically transparent zebrafish embryos. Evasion of macrophages, localization of the fibrillar aggregates in the caudal vein, and association with scavenger endothelial cells are observed. The interaction of the fibrillar supramolecular nanoparticles with the caudal vein is abrogated in gene-edited zebrafish lacking Stabilin-2, a receptor analogously found in the mammalian liver, providing a molecular view into their interaction with scavenger endothelial cells. We further show that this interaction can be tuned based on the choice of monomer and its resultant self-assembly.


Asunto(s)
Nanopartículas , Pez Cebra , Animales , Células Endoteliales , Polímeros , Distribución Tisular
7.
EMBO J ; 34(10): 1309-18, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-25762592

RESUMEN

Chemokines are vertebrate-specific, structurally related proteins that function primarily in controlling cell movements by activating specific 7-transmembrane receptors. Chemokines play critical roles in a large number of biological processes and are also involved in a range of pathological conditions. For these reasons, chemokines are at the focus of studies in developmental biology and of clinically oriented research aimed at controlling cancer, inflammation, and immunological diseases. The small size of the zebrafish embryos, their rapid external development, and optical properties as well as the large number of eggs and the fast expansion in genetic tools available make this model an extremely useful one for studying the function of chemokines and chemokine receptors in an in vivo setting. Here, we review the findings relevant to the role that chemokines play in the context of directed single-cell migration, primarily in neutrophils and germ cells, and compare it to the collective cell migration of the zebrafish lateral line. We present the current knowledge concerning the formation of the chemokine gradient, its interpretation within the cell, and the molecular mechanisms underlying the cellular response to chemokine signals during directed migration.


Asunto(s)
Movimiento Celular/fisiología , Quimiocinas/metabolismo , Animales , Citocinas/metabolismo , Femenino , Masculino , Modelos Biológicos , Neutrófilos/metabolismo , Pez Cebra
8.
Development ; 142(9): 1695-704, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25834021

RESUMEN

SoxF family members have been linked to arterio-venous specification events and human pathological conditions, but in contrast to Sox17 and Sox18, a detailed in vivo analysis of a Sox7 mutant model is still lacking. In this study we generated zebrafish sox7 mutants to understand the role of Sox7 during vascular development. By in vivo imaging of transgenic zebrafish lines we show that sox7 mutants display a short circulatory loop around the heart as a result of aberrant connections between the lateral dorsal aorta (LDA) and either the venous primary head sinus (PHS) or the common cardinal vein (CCV). In situ hybridization and live observations in flt4:mCitrine transgenic embryos revealed increased expression levels of flt4 in arterial endothelial cells at the exact location of the aberrant vascular connections in sox7 mutants. An identical circulatory short loop could also be observed in newly generated mutants for hey2 and efnb2. By genetically modulating levels of sox7, hey2 and efnb2 we demonstrate a genetic interaction of sox7 with hey2 and efnb2. The specific spatially confined effect of loss of Sox7 function can be rescued by overexpressing the Notch intracellular domain (NICD) in arterial cells of sox7 mutants, placing Sox7 upstream of Notch in this aspect of arterial development. Hence, sox7 levels are crucial in arterial specification in conjunction with hey2 and efnb2 function, with mutants in all three genes displaying shunt formation and an arterial block.


Asunto(s)
Animales Modificados Genéticamente/genética , Arterias/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Morfogénesis/fisiología , Factores de Transcripción SOXF/genética , Proteínas de Pez Cebra/genética , Pez Cebra/embriología , Angiografía , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Cartilla de ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Hibridación in Situ , Morfolinos/genética , Mutación/genética , Flujo Sanguíneo Regional/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción SOXF/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(52): 21372-7, 2012 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-23236130

RESUMEN

Bone mineralization is an essential step during the embryonic development of vertebrates, and bone serves vital functions in human physiology. To systematically identify unique gene functions essential for osteogenesis, we performed a forward genetic screen in zebrafish and isolated a mutant, no bone (nob), that does not form any mineralized bone. Positional cloning of nob identified the causative gene to encode ectonucleoside triphosphate/diphosphohydrolase 5 (entpd5); analysis of its expression pattern demonstrates that entpd5 is specifically expressed in osteoblasts. An additional mutant, dragonfish (dgf), exhibits ectopic mineralization in the craniofacial and axial skeleton and encodes a loss-of-function allele of ectonucleotide pyrophosphatase phosphodiesterase 1 (enpp1). Intriguingly, generation of double-mutant nob/dgf embryos restored skeletal mineralization in nob mutants, indicating that mechanistically, Entpd5 and Enpp1 act as reciprocal regulators of phosphate/pyrophosphate homeostasis in vivo. Consistent with this, entpd5 mutant embryos can be rescued by high levels of inorganic phosphate, and phosphate-regulating factors, such as fgf23 and npt2a, are significantly affected in entpd5 mutant embryos. Our study demonstrates that Entpd5 represents a previously unappreciated essential player in phosphate homeostasis and skeletal mineralization.


Asunto(s)
Calcificación Fisiológica , Homeostasis , Fosfatos/metabolismo , Pirofosfatasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Huesos/embriología , Huesos/metabolismo , Huesos/patología , Embrión no Mamífero/metabolismo , Factor-23 de Crecimiento de Fibroblastos , Humanos , Datos de Secuencia Molecular , Mutación/genética , Especificidad de Órganos , Osteoblastos/enzimología , Fenotipo , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/química , Pirofosfatasas/genética , Pez Cebra/embriología , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/genética
10.
Development ; 138(19): 4327-32, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21865323

RESUMEN

The generation of zebrafish transgenic lines that express specific fluorophores in a cell- or tissue-specific manner is an important technique that takes full advantage of the optical clarity of the embryo. Identifying promoter fragments that faithfully recapitulate endogenous expression patterns and levels is often difficult and using large genomic DNA fragments, such as bacterial artificial chromosomes (BACs), makes the process of transgenesis less reliable. Here we provide a detailed protocol that allows for BAC selection and subsequent rapid modification through recombineering in Escherichia coli, resulting in BACs that can be injected into zebrafish embryos and, aided by tol2-mediated transgenesis, reliably yield stable transgenic lines. A number of BACs can be prepared in parallel, and injection of the BACs containing CFP/YFP/RFP or Gal4 cassettes allows for immediate testing of whether a particular BAC will yield the desired result. Furthermore, since injected embryos often show widespread expression, recombineered BACs provide an alternative to two-color in situ hybridizations: BACs injected into embryos of a different transgenic reporter line thus enable in vivo colocalization studies. Using this protocol, we have generated 66 stable lines for 23 different genes, with an average transgenesis rate above 10%. Importantly, we provide evidence that BAC size shows no apparent correlation to the transgenesis rate achieved and that there are no severe position effects.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Técnicas Genéticas , ARN Mensajero/metabolismo , Transposasas/metabolismo , Pez Cebra/genética , Animales , Proteínas Bacterianas/metabolismo , Cartilla de ADN/genética , Escherichia coli/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Proteínas Luminiscentes/metabolismo , Reacción en Cadena de la Polimerasa , Recombinación Genética , Transgenes , Proteína Fluorescente Roja
11.
Development ; 138(9): 1717-26, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21429983

RESUMEN

During angiogenic sprouting, newly forming blood vessels need to connect to the existing vasculature in order to establish a functional circulatory loop. Previous studies have implicated genetic pathways, such as VEGF and Notch signaling, in controlling angiogenesis. We show here that both pathways similarly act during vascularization of the zebrafish central nervous system. In addition, we find that chemokine signaling specifically controls arterial-venous network formation in the brain. Zebrafish mutants for the chemokine receptor cxcr4a or its ligand cxcl12b establish a decreased number of arterial-venous connections, leading to the formation of an unperfused and interconnected blood vessel network. We further find that expression of cxcr4a in newly forming brain capillaries is negatively regulated by blood flow. Accordingly, unperfused vessels continue to express cxcr4a, whereas connection of these vessels to the arterial circulation leads to rapid downregulation of cxcr4a expression and loss of angiogenic characteristics in endothelial cells, such as filopodia formation. Together, our findings indicate that hemodynamics, in addition to genetic pathways, influence vascular morphogenesis by regulating the expression of a proangiogenic factor that is necessary for the correct pathfinding of sprouting brain capillaries.


Asunto(s)
Arterias/embriología , Encéfalo/irrigación sanguínea , Encéfalo/embriología , Quimiocinas/metabolismo , Hemodinámica/fisiología , Venas/embriología , Animales , Animales Modificados Genéticamente , Arterias/metabolismo , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Quimiocinas/fisiología , Quimiocinas CXC/metabolismo , Quimiocinas CXC/fisiología , Simulación por Computador , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Hemodinámica/genética , Modelos Biológicos , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Venas/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
12.
Adv Healthc Mater ; 13(26): e2401252, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38889433

RESUMEN

Lipid nanoparticle (LNP) remains the most advanced platform for messenger RNA (mRNA) delivery. To date, mRNA LNPs synthesis is mostly performed by mixing lipids and mRNA with microfluidics. In this study, a cost-effective microfluidic setup for synthesizing mRNA LNPs is developed. It allows to fine-tune the LNPs characteristics without compromising LNP properties. It is compared with a commercial device (NanoAssemblr) and ethanol injection and the influence of manufacturing conditions on the performance of mRNA LNPs is investigated. LNPs prepared by ethanol injection exhibit broader size distributions and more inhomogeneous internal structure (e.g., bleb-like substructures), while other LNPs show uniform structure with dense cores. Small angel X-ray scattering (SAXS) data indicate a tighter interaction between mRNA and lipids within LNPs synthesized by custom device, compared to LNPs produced by NanoAssemblr. Interestingly, the better transfection efficiency of polysarcosine (pSar)-modified LNPs correlates with a higher surface roughness than that of PEGylated ones. The manufacturing approach, however, shows modest influence on mRNA expression in vivo. In summary, the home-developed cost-effective microfluidic device can synthesize LNPs and represents a potent alternative to NanoAssemblr. The preparation methods show notable effect on LNPs' structure but a minor influence on mRNA delivery in vitro and in vivo.


Asunto(s)
Nanopartículas , ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nanopartículas/química , Animales , Lípidos/química , Humanos , Ratones , Transfección/métodos , Tamaño de la Partícula , Liposomas
13.
Dev Cell ; 14(2): 287-97, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18267096

RESUMEN

We have used high-resolution 4D imaging of cardiac progenitor cells (CPCs) in zebrafish to investigate the earliest left-right asymmetric movements during cardiac morphogenesis. Differential migratory behavior within the heart field was observed, resulting in a rotation of the heart tube. The leftward displacement and rotation of the tube requires hyaluronan synthase 2 expression within the CPCs. Furthermore, by reducing or ectopically activating BMP signaling or by implantation of BMP beads we could demonstrate that BMP signaling, which is asymmetrically activated in the lateral plate mesoderm and regulated by early left-right signals, is required to direct CPC migration and cardiac rotation. Together, these results support a model in which CPCs migrate toward a BMP source during development of the linear heart tube, providing a mechanism by which the left-right axis drives asymmetric development of the vertebrate heart.


Asunto(s)
Tipificación del Cuerpo , Movimiento Celular , Corazón/embriología , Miocardio/citología , Rotación , Células Madre/citología , Pez Cebra/embriología , Animales , Tipificación del Cuerpo/efectos de los fármacos , Proteínas Morfogenéticas Óseas/farmacología , Linaje de la Célula/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Glucuronosiltransferasa/metabolismo , Corazón/efectos de los fármacos , Humanos , Hialuronano Sintasas , Factores de Determinación Derecha-Izquierda , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mutación/genética , Transducción de Señal/efectos de los fármacos , Proteínas Smad/metabolismo , Células Madre/efectos de los fármacos , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Pez Cebra/metabolismo
14.
Development ; 137(16): 2653-7, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20610484

RESUMEN

The endothelial cells of the vertebrate lymphatic system assemble into complex networks, but local cues that guide the migration of this distinct set of cells are currently unknown. As a model for lymphatic patterning, we have studied the simple vascular network of the zebrafish trunk consisting of three types of lymphatic vessels that develop in close connection with the blood vasculature. We have generated transgenic lines that allow us to distinguish between arterial, venous and lymphatic endothelial cells (LECs) within a single zebrafish embryo. We found that LECs migrate exclusively along arteries in a manner that suggests that arterial endothelial cells serve as the LEC migratory substrate. In the absence of intersegmental arteries, LEC migration in the trunk is blocked. Our data therefore demonstrate a crucial role for arteries in LEC guidance.


Asunto(s)
Tipificación del Cuerpo , Células Endoteliales/citología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Arterias/citología , Movimiento Celular
15.
J Control Release ; 356: 1-13, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36803765

RESUMEN

Messenger RNA (mRNA) is revolutionizing the future of therapeutics in a variety of diseases, including neurological disorders. Lipid formulations have shown to be an effective platform technology for mRNA delivery and are the basis for the approved mRNA vaccines. In many of these lipid formulations, polyethylene glycol (PEG)-functionalized lipid provides steric stabilization and thus plays a key role in improving the stability both ex vivo and in vivo. However, immune responses towards PEGylated lipids may compromise the use of those lipids in some applications (e.g., induction of antigen specific tolerance), or within sensitive tissues (e.g., central nervous system (CNS)). With respect to this issue, polysarcosine (pSar)-based lipopolymers were investigated as an alternative to PEG-lipid in mRNA lipoplexes for controlled intracerebral protein expression in this study. Four polysarcosine-lipids with defined sarcosine average molecular weight (Mn = 2 k, 5 k) and anchor diacyl chain length (m = 14, 18) were synthesized, and incorporated into cationic liposomes. We found that the content, pSar chain length and carbon tail lengths of pSar-lipids govern the transfection efficiency and biodistribution. Increasing carbon diacyl chain length of pSar-lipid led up to 4- and 6-fold lower protein expression in vitro. When the length of either pSar chain or lipid carbon tail increased, the transfection efficiency decreased while the circulation time was prolonged. mRNA lipoplexes containing 2.5% C14-pSar2k resulted in the highest mRNA translation in the brain of zebrafish embryos through intraventricular injection, while C18-pSar2k-liposomes showed a comparable circulation with DSPE-PEG2k-liposomes after systemic administration. To conclude, pSar-lipid enable efficient mRNA delivery, and can substitute PEG-lipids in lipid formulations for controlled protein expression within the CNS.


Asunto(s)
Liposomas , Sarcosina , Animales , ARN Mensajero , Pez Cebra , Distribución Tisular , Polietilenglicoles , Transfección , Lípidos
16.
Artículo en Inglés | MEDLINE | ID: mdl-36931457

RESUMEN

BACKGROUND AND AIMS: Scavenger receptor class B1 (SCARB1) - also known as the high-density lipoprotein (HDL) receptor - is a multi-ligand scavenger receptor that is primarily expressed in liver and steroidogenic organs. This receptor is known for its function in reverse cholesterol transport (RCT) in mammals and hence disruption leads to a massive increase in HDL cholesterol in these species. The extracellular domain of SCARB1 - which is important for cholesterol handling - is highly conserved across multiple vertebrates, except in zebrafish. METHODS: To examine the functional conservation of SCARB1 among vertebrates, two stable scarb1 knockout zebrafish lines, scarb1 715delA (scarb1 -1 nt) and scarb1 715_716insGG (scarb1 +2 nt), were created using CRISPR-Cas9 technology. RESULTS: We demonstrate that, in zebrafish, SCARB1 deficiency leads to disruption of carotenoid-based pigmentation, reduced fertility, and a decreased larvae survival rate, whereas steroidogenesis was unaltered. The observed reduced fertility is driven by defects in female fertility (-50 %, p < 0.001). Importantly, these alterations were independent of changes in free (wild-type 2.4 ± 0.2 µg/µl versus scarb1-/- 2.0 ± 0.1 µg/µl) as well as total (wild-type 4.2 ± 0.4 µg/µl versus scarb1-/- 4.0 ± 0.3 µg/µl) plasma cholesterol levels. Uptake of HDL in the liver of scarb1-/- zebrafish larvae was reduced (-86.7 %, p < 0.001), but this coincided with reduced perfusion of the liver. No effect was observed on lipoprotein uptake in the caudal vein. SCARB1 deficient canaries, which also lack carotenoids in their plumage, similarly as scarb1-/- zebrafish, failed to show an increase in plasma free- and total cholesterol levels. CONCLUSION: Our findings suggest that the specific function of SCARB1 in maintaining plasma cholesterol could be an evolutionary novelty that became prominent in mammals, while other known functions were already present earlier during vertebrate evolution.


Asunto(s)
Colesterol , Pez Cebra , Animales , Femenino , Pez Cebra/genética , Receptores Depuradores de Clase B/genética , HDL-Colesterol , Mamíferos
17.
Adv Healthc Mater ; 12(10): e2202709, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36565694

RESUMEN

Plasma lipid transport and metabolism are essential to ensure correct cellular function throughout the body. Dynamically regulated in time and space, the well-characterized mechanisms underpinning plasma lipid transport and metabolism offers an enticing, but as yet underexplored, rationale to design synthetic lipid nanoparticles with inherent cell/tissue selectivity. Herein, a systemically administered liposome formulation, composed of just two lipids, that is capable of hijacking a triglyceride lipase-mediated lipid transport pathway resulting in liposome recognition and uptake within specific endothelial cell subsets is described. In the absence of targeting ligands, liposome-lipase interactions are mediated by a unique, phase-separated ("parachute") liposome morphology. Within the embryonic zebrafish, selective liposome accumulation is observed at the developing blood-brain barrier. In mice, extensive liposome accumulation within the liver and spleen - which is reduced, but not eliminated, following small molecule lipase inhibition - supports a role for endothelial lipase but highlights these liposomes are also subject to significant "off-target" by reticuloendothelial system organs. Overall, these compositionally simplistic liposomes offer new insights into the discovery and design of lipid-based nanoparticles that can exploit endogenous lipid transport and metabolism pathways to achieve cell selective targeting in vivo.


Asunto(s)
Liposomas , Pez Cebra , Ratones , Animales , Pez Cebra/metabolismo , Células Endoteliales/metabolismo , Lipasa , Lípidos , Lipoproteínas
18.
Pharmaceutics ; 14(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36297521

RESUMEN

Low transfection efficiency in endothelial cells (EC) is still a bottleneck for the majority of siRNA-based vascular delivery approaches. In this work, we developed a lipid-based nanoparticle (LNP) formulation based on a combination of a permanently charged cationic lipid-DOTAP and a conditionally ionized cationic lipid-MC3 (DOTAP/MC3) for the enhanced delivery of siRNA into EC. Compared with a single DOTAP or MC3-based benchmark LNP, we demonstrated that the DOTAP/MC3 LNP formulation shows the best transfection efficiency both in primary EC in vitro and in endothelium in zebrafish. The high transfection activity of the DOTAP/MC3 LNP formulation is achieved by a combination of improved endothelial association mediated by DOTAP and MC3-triggered efficient siRNA intracellular release in EC. Furthermore, AbVCAM-1-coupled DOTAP/MC3 LNP-mediated siRNARelA transfection showed pronounced anti-inflammatory effects in inflammatory-activated primary EC by effectively blocking the NF-κB pathway. In conclusion, the combination of permanent and ionizable cationic lipids in LNP formulation provides an effective endothelial cell delivery of siRNA.

19.
Atherosclerosis ; 346: 18-25, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35247629

RESUMEN

BACKGROUND AND AIMS: Scavenger receptors form a superfamily of membrane-bound receptors that bind and internalize different types of ligands, including pro-atherogenic oxidized low-density lipoproteins (oxLDLs). In vitro studies have indicated a role for the liver sinusoidal endothelial cell receptors stabilin 1 (stab1) and 2 (stab2) in oxLDL clearance. In this study, we evaluated the potential role of stab1 and stab2 in lipoprotein uptake in zebrafish, an upcoming model for studying cholesterol metabolism and atherosclerosis. METHODS: Lipoproteins were injected in the duct of Cuvier of wild-type (ABTL) or stab1 and stab2 mutant (stab1-/-stab2-/-) zebrafish larvae at 3 days post-fertilization. To examine the effect of stabilin deficiency on lipoprotein and cholesterol metabolism, zebrafish larvae were challenged with a high cholesterol diet (HCD; 4% w/w) for 10 days. RESULTS: Lipoprotein injections showed impaired uptake of both LDL and oxLDL into the vessel wall of caudal veins of stab1-/-stab2-/- zebrafish, which was paralleled by redistribution to tissue macrophages. Total body cholesterol levels did not differ between HCD-fed stab1-/-stab2-/- and ABTL zebrafish. However, stab1-/-stab2-/- larvae exhibited 1.4-fold higher mRNA expression levels of ldlra involved in (modified) LDL uptake, whereas the expression levels of scavenger receptors scarb1 and cd36 were significantly decreased. CONCLUSIONS: We have shown that stabilins 1 and 2 have an important scavenging function for apolipoprotein B-containing lipoproteins in zebrafish and that combined deficiency of these two proteins strongly upregulates the clearance of lipoproteins by macrophages within the caudal vein. Our current study highlights the use of zebrafish as model to study lipoprotein metabolism and liver sinusoidal endothelial cell function.


Asunto(s)
Aterosclerosis , Pez Cebra , Animales , Apolipoproteínas B/metabolismo , Antígenos CD36/genética , Colesterol , Lipoproteínas LDL/metabolismo , Receptores Depuradores/metabolismo , Pez Cebra/metabolismo
20.
Adv Mater ; 34(16): e2201095, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35218106

RESUMEN

Lipid nanoparticles (LNPs) are the leading nonviral technologies for the delivery of exogenous RNA to target cells in vivo. As systemic delivery platforms, these technologies are exemplified by Onpattro, an approved LNP-based RNA interference therapy, administered intravenously and targeted to parenchymal liver cells. The discovery of systemically administered LNP technologies capable of preferential RNA delivery beyond hepatocytes has, however, proven more challenging. Here, preceded by comprehensive mechanistic understanding of in vivo nanoparticle biodistribution and bodily clearance, an LNP-based messenger RNA (mRNA) delivery platform is rationally designed to preferentially target the hepatic reticuloendothelial system (RES). Evaluated in embryonic zebrafish, validated in mice, and directly compared to LNP-mRNA systems based on the lipid composition of Onpattro, RES-targeted LNPs significantly enhance mRNA expression both globally within the liver and specifically within hepatic RES cell types. Hepatic RES targeting requires just a single lipid change within the formulation of Onpattro to switch LNP surface charge from neutral to anionic. This technology not only provides new opportunities to treat liver-specific and systemic diseases in which RES cell types play a key role but, more importantly, exemplifies that rational design of advanced RNA therapies must be preceded by a robust understanding of the dominant nano-biointeractions involved.


Asunto(s)
Lípidos , Nanopartículas , Animales , Liposomas , Hígado/metabolismo , Ratones , Sistema Mononuclear Fagocítico/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Distribución Tisular , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA