Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Brain Mapp ; 45(7): e26694, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38727014

RESUMEN

Schizophrenia (SZ) is a debilitating mental illness characterized by adolescence or early adulthood onset of psychosis, positive and negative symptoms, as well as cognitive impairments. Despite a plethora of studies leveraging functional connectivity (FC) from functional magnetic resonance imaging (fMRI) to predict symptoms and cognitive impairments of SZ, the findings have exhibited great heterogeneity. We aimed to identify congruous and replicable connectivity patterns capable of predicting positive and negative symptoms as well as cognitive impairments in SZ. Predictable functional connections (FCs) were identified by employing an individualized prediction model, whose replicability was further evaluated across three independent cohorts (BSNIP, SZ = 174; COBRE, SZ = 100; FBIRN, SZ = 161). Across cohorts, we observed that altered FCs in frontal-temporal-cingulate-thalamic network were replicable in prediction of positive symptoms, while sensorimotor network was predictive of negative symptoms. Temporal-parahippocampal network was consistently identified to be associated with reduced cognitive function. These replicable 23 FCs effectively distinguished SZ from healthy controls (HC) across three cohorts (82.7%, 90.2%, and 86.1%). Furthermore, models built using these replicable FCs showed comparable accuracies to those built using the whole-brain features in predicting symptoms/cognition of SZ across the three cohorts (r = .17-.33, p < .05). Overall, our findings provide new insights into the neural underpinnings of SZ symptoms/cognition and offer potential targets for further research and possible clinical interventions.


Asunto(s)
Disfunción Cognitiva , Conectoma , Imagen por Resonancia Magnética , Red Nerviosa , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Masculino , Adulto , Femenino , Conectoma/métodos , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Estudios de Cohortes , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Adulto Joven , Persona de Mediana Edad
2.
bioRxiv ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38948857

RESUMEN

Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter-network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the investigation of how connectivity strength is heterogeneously distributed across available targets in both SZ patients and healthy controls. We analyzed fMRI data from 151 schizophrenia patients and demographically matched 160 healthy controls. Our assessment encompassed both static and dynamic ICE, revealing significant differences in the heterogeneity of connectivity levels across available brain networks between SZ patients and healthy controls (HC). These networks are associated with subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN) and cerebellar (CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients exhibit significantly higher randomness in the distribution of time-varying connectivity strength across functional regions from each source network, compared to healthy control group. C-means fuzzy clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly higher occupancy weights in clusters with weak, low-scale functional entropy correlation, while the control group shows greater occupancy weights in clusters with strong, large-scale functional entropy correlation. k-means clustering analysis on time-indexed ICE vectors revealed that cluster with highest ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that it appears healthy for a brain to primarily circulate through complex, less structured connectivity patterns, with occasional transitions into more focused patterns. However, individuals with SZ seem to struggle with transiently attaining these more focused and structured connectivity patterns. Proposed ICE measure presents a novel framework for gaining deeper insights into understanding mechanisms of healthy and disease brain states and a substantial step forward in the developing advanced methods of diagnostics of mental health conditions.

3.
Schizophr Res ; 270: 392-402, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986386

RESUMEN

Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N = 213 SZ and healthy control subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p = 6 × 10-3; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H2S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8 % of brain functional network connectivity from each component also showed significant differences between SZ and healthy controls with strong performance in classifying SZ from healthy controls, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Microbiota , Boca , Esquizofrenia , Humanos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/microbiología , Femenino , Masculino , Adulto , Microbiota/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Boca/microbiología , Boca/fisiopatología , Boca/diagnóstico por imagen , ARN Ribosómico 16S/genética , Conectoma , Persona de Mediana Edad , Descanso , Adulto Joven
4.
Schizophr Res ; 264: 130-139, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128344

RESUMEN

BACKGROUND: Similarities among schizophrenia (SZ), schizoaffective disorder (SAD) and bipolar disorder (BP) including clinical phenotypes, brain alterations and risk genes, make it challenging to perform reliable separation among them. However, previous subtype identification that transcend traditional diagnostic boundaries were based on group-level neuroimaging features, ignoring individual-level inferences. METHODS: 455 psychoses (178 SZs, 134 SADs and 143 BPs), their first-degree relatives (N = 453) and healthy controls (HCs, N = 220) were collected from Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP I) consortium. Individualized covariance structural differential networks (ICSDNs) were constructed for each patient and multi-site clustering was used to identify psychosis subtypes. Group differences between subtypes in clinical phenotypes and voxel-wise fractional amplitude of low frequency fluctuation (fALFF) were calculated, as well as between the corresponding relatives. RESULTS: Two psychosis subtypes were identified with increased whole brain structural covariance, with decreased connectivity between amygdala-hippocampus and temporal-occipital cortex in subtype I (S-I) compared to subtype II (S-II), which was replicated under different clustering methods, number of edges and across datasets (B-SNIP II) and different brain atlases. S-I had higher emotional-related symptoms than S-II and showed significant fALFF decrease in temporal and occipital cortex, while S-II was more similar to HC. This pattern was consistently validated on relatives of S-I and S-II in both fALFF and clinical symptoms. CONCLUSIONS: These findings reconcile categorical and dimensional perspectives of psychosis neurobiological heterogeneity, indicating that relatives of S-I might have greater predisposition in developing psychosis, while relatives of S-II are more likely to be healthy. This study contributes to the development of neuroimaging informed diagnostic classifications within psychosis spectrum.


Asunto(s)
Trastorno Bipolar , Trastornos Psicóticos , Esquizofrenia , Humanos , Familia/psicología , Trastornos Psicóticos/diagnóstico por imagen , Trastornos Psicóticos/genética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/genética , Trastorno Bipolar/psicología , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética
5.
Transl Psychiatry ; 14(1): 326, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112461

RESUMEN

People affected by psychotic, depressive and developmental disorders are at a higher risk for alcohol and tobacco use. However, the further associations between alcohol/tobacco use and symptoms/cognition in these disorders remain unexplored. We identified multimodal brain networks involving alcohol use (n = 707) and tobacco use (n = 281) via supervised multimodal fusion and evaluated if these networks affected symptoms and cognition in people with psychotic (schizophrenia/schizoaffective disorder/bipolar, n = 178/134/143), depressive (major depressive disorder, n = 260) and developmental (autism spectrum disorder/attention deficit hyperactivity disorder, n = 421/346) disorders. Alcohol and tobacco use scores were used as references to guide functional and structural imaging fusion to identify alcohol/tobacco use associated multimodal patterns. Correlation analyses between the extracted brain features and symptoms or cognition were performed to evaluate the relationships between alcohol/tobacco use with symptoms/cognition in 6 psychiatric disorders. Results showed that (1) the default mode network (DMN) and salience network (SN) were associated with alcohol use, whereas the DMN and fronto-limbic network (FLN) were associated with tobacco use; (2) the DMN and fronto-basal ganglia (FBG) related to alcohol/tobacco use were correlated with symptom and cognition in psychosis; (3) the middle temporal cortex related to alcohol/tobacco use was associated with cognition in depression; (4) the DMN related to alcohol/tobacco use was related to symptom, whereas the SN and limbic system (LB) were related to cognition in developmental disorders. In summary, alcohol and tobacco use were associated with structural and functional abnormalities in DMN, SN and FLN and had significant associations with cognition and symptoms in psychotic, depressive and developmental disorders likely via different brain networks. Further understanding of these relationships may assist clinicians in the development of future approaches to improve symptoms and cognition among psychotic, depressive and developmental disorders.


Asunto(s)
Trastornos Psicóticos , Uso de Tabaco , Humanos , Femenino , Masculino , Adulto , Trastornos Psicóticos/diagnóstico por imagen , Uso de Tabaco/efectos adversos , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Adulto Joven , Trastorno Depresivo Mayor/diagnóstico por imagen , Persona de Mediana Edad , Imagen Multimodal , Consumo de Bebidas Alcohólicas/efectos adversos , Neuroimagen , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen
6.
Psychiatry Res Neuroimaging ; 342: 111843, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38896909

RESUMEN

Schizophrenia is associated with robust white matter (WM) abnormalities but influences of potentially confounding variables and relationships with cognitive performance and symptom severity remain to be fully determined. This study was designed to evaluate WM abnormalities based on diffusion tensor imaging (DTI) in individuals with schizophrenia, and their relationships with cognitive performance and symptom severity. Data from individuals with schizophrenia (SZ; n=138, mean age±SD=39.02±11.82; 105 males) and healthy controls (HC; n=143, mean age±SD=37.07±10.84; 102 males) were collected as part of the Function Biomedical Informatics Research Network Phase 3 study. Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were compared between individuals with schizophrenia and healthy controls, and their relationships with neurocognitive performance and symptomatology assessed. Individuals with SZ had significantly lower FA in forceps minor and the left inferior fronto-occipital fasciculus compared to HC. FA in several tracts were associated with speed of processing and attention/vigilance and the severity of the negative symptom alogia. This study suggests that regional WM abnormalities are fundamentally involved in the pathophysiology of schizophrenia and may contribute to cognitive performance deficits and symptom expression observed in schizophrenia.


Asunto(s)
Imagen de Difusión Tensora , Esquizofrenia , Sustancia Blanca , Humanos , Masculino , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Adulto , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/patología , Disfunción Cognitiva/psicología , Disfunción Cognitiva/fisiopatología
7.
bioRxiv ; 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38234846

RESUMEN

Recent microbiome-brain axis findings have shown evidence of the modulation of microbiome community as an environmental mediator in brain function and psychiatric illness. This work is focused on the role of the microbiome in understanding a rarely investigated environmental involvement in schizophrenia (SZ), especially in relation to brain circuit dysfunction. We leveraged high throughput microbial 16s rRNA sequencing and functional neuroimaging techniques to enable the delineation of microbiome-brain network links in SZ. N=213 SZ and healthy control (HC) subjects were assessed for the oral microbiome. Among them, 139 subjects were scanned by resting-state functional magnetic resonance imaging (rsfMRI) to derive brain functional connectivity. We found a significant microbiome compositional shift in SZ beta diversity (weighted UniFrac distance, p= 6×10 -3 ; Bray-Curtis distance p = 0.021). Fourteen microbial species involving pro-inflammatory and neurotransmitter signaling and H 2 S production, showed significant abundance alterations in SZ. Multivariate analysis revealed one pair of microbial and functional connectivity components showing a significant correlation of 0.46. Thirty five percent of microbial species and 87.8% of brain functional network connectivity from each component also showed significant differences between SZ and HC with strong performance in classifying SZ from HC, with an area under curve (AUC) = 0.84 and 0.87, respectively. The results suggest a potential link between oral microbiome dysbiosis and brain functional connectivity alteration in relation to SZ, possibly through immunological and neurotransmitter signaling pathways and the hypothalamic-pituitary-adrenal axis, supporting for future work in characterizing the role of oral microbiome in mediating effects on SZ brain functional activity.

8.
Rev. Asoc. Esp. Neuropsiquiatr ; 23(87): 2555-2576, 2003. tab
Artículo en Es | IBECS (España) | ID: ibc-31799

RESUMEN

En este informe se analiza el Proceso de Reforma de la atención a la salud mental en las Illes Balears desde Enero del 2000 hasta el 31 de Marzo del 2003. Se revisa dicho Proceso desde la Perspectiva histórica, Marco Jurídico, Modelo organizativo y de Gestión, Modificaciones para la participación ciudadana y cambios en Formación Continuada, Docencia e Investigación. Así mismo, se realiza una exposición actual de los dispositivos de atención a la salud mental y profesionales, el análisis comparativo de la evolución de los recursos y profesionales según las recomendaciones del Comité Técnico de Salud Mental. Se realiza una valoración cualitativa y cuantitativa de los datos obtenidos, y por último unas recomendaciones generales y específicas para la continuidad del proceso de reforma (AU)


Asunto(s)
Humanos , Reforma de la Atención de Salud/métodos , Servicios de Salud Mental/tendencias , Diagnóstico de la Situación de Salud , Reforma de la Atención de Salud/legislación & jurisprudencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA