Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS ES T Eng ; 3(7): 955-968, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37469756

RESUMEN

We present the mass balances associated with carbon dioxide (CO2) removal (CDR) using seawater as both the source of reactants and as the reaction medium via electrolysis following the "Equatic" (formerly known as "SeaChange") process. This process, extensively detailed in La Plante E.C.; ACS Sustain. Chem. Eng.2021, 9, ( (3), ), 1073-1089, involves the application of an electric overpotential that splits water to form H+ and OH- ions, producing acidity and alkalinity, i.e., in addition to gaseous coproducts, at the anode and cathode, respectively. The alkalinity that results, i.e., via the "continuous electrolytic pH pump" results in the instantaneous precipitation of calcium carbonate (CaCO3), hydrated magnesium carbonates (e.g., nesquehonite: MgCO3·3H2O, hydromagnesite: Mg5(CO3)4(OH)2·4H2O, etc.), and/or magnesium hydroxide (Mg(OH)2) depending on the CO32- ion-activity in solution. This results in the trapping and, hence, durable and permanent (at least ∼10 000-100 000 years) immobilization of CO2 that was originally dissolved in water, and that is additionally drawn down from the atmosphere within: (a) mineral carbonates, and/or (b) as solvated bicarbonate (HCO3-) and carbonate (CO32-) ions (i.e., due to the absorption of atmospheric CO2 into seawater having enhanced alkalinity). Taken together, these actions result in the net removal of ∼4.6 kg of CO2 per m3 of seawater catholyte processed. Geochemical simulations quantify the extents of net CO2 removal including the dependencies on the process configuration. It is furthermore indicated that the efficiency of realkalinization of the acidic anolyte using alkaline solids depends on their acid neutralization capacity and dissolution reactivity. We also assess changes in seawater chemistry resulting from Mg(OH)2 dissolution with emphasis on the change in seawater alkalinity and saturation state. Overall, this analysis provides direct quantifications of the ability of the Equatic process to serve as a means for technological CDR to mitigate the worst effects of accelerating climate change.

2.
Waste Manag ; 121: 117-126, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360811

RESUMEN

High-sulfur mixed fly ash residues from semi-dry flue gas desulfurization units in coal-fired power plants are unsuitable for use as supplementary cementitious material (SCM) for concrete production or carbon dioxide utilization. In this work, we explore the potential for upcycling a representative spray dry absorber ash (10.44 wt% SO3) into concrete-SCM by selective sulfur removal via weak acid dissolution while simultaneously exploring the possibility for CO2 capture. Towards this effort, parametric studies varying liquid-to-solid ratio, acidity, and CO2 pressure were conducted in a batch reactor to establish the sulfur removal characteristics in de-ionized water, nitric acid, and carbonic acid, respectively. The dissolution studies show that the leaching of sulfur from calcium sulfite hemihydrate, which is the predominant S phase, is rapid and achieves a concentration plateau within 5 min, and subsequently, appears to be controlled by the primary mineral solubility. Preferential S removal was sufficient to meet SCM standards (e.g., 5.0 wt% as per ASTM C618) using all three washing solutions with 0.62-0.72 selectivity (S^), defined as the molar ratio of S to Ca in the leachate, for a raw fly ash with bulk S^ = 0.3. Acid dissolution with 1.43 meq/g of ash or under 5 atm CO2 retained > 18 wt% CaO and other Si-, Al-rich phases in the fly ash. Based on the experimental findings, two sulfur removal schemes were suggested for either integration with CO2 capture and utilization processes using flue gas or to produce fly ash for use as a SCM.


Asunto(s)
Ceniza del Carbón , Carbón Mineral , Dióxido de Carbono , Ceniza del Carbón/análisis , Centrales Eléctricas , Azufre , Dióxido de Azufre
3.
ACS Appl Mater Interfaces ; 12(37): 42030-42040, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32876431

RESUMEN

Surface modification offers a straightforward means to alter and enhance the properties and performance of materials, such as nanofiltration membranes for water softening. Herein, we demonstrate how a membrane's surface charge can be altered by grafting different electrostatically varying copolymers onto commercial membrane surfaces using perfluorophenylazide (PFPA) photochemistry for enhanced ion separation performance. The native membrane's performance-i.e., in terms of divalent cation separation-with copolymer coatings containing a positively charged quaternary ammonium (-N(Me)3+), a negatively charged sulfonate (-SO3-), and an essentially neutral zwitterion (sulfobetaine, -N(Me)2R2+, and -SO3-), respectively, indicates that: (a) the sulfonated polymer induces robust Coulombic exclusion of divalent anions as compared to the negatively charged native membrane surface on account of its higher negative charge; (b) the positively charged ammonium coating induces exclusion of cations more effectively than the native membrane; and significantly, (c) the zwitterion polymer coating, which reduces the surface roughness and improves wettability, in spite of its near-neutral charge enhances exclusion of both divalent cations and anions on account of aperture sieving by the compact zwitterion polymer that arises from its ability to limit the size of ions that transport through the polymer along with dielectric exclusion. The outcomes thereby inform new pathways to achieve size- and charge-based exclusion of ionic, molecular, and other species contained in liquid streams.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA