Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38852175

RESUMEN

PURPOSE: Wideband phase-sensitive inversion recovery (PSIR) late gadolinium enhancement (LGE) enables myocardial scar imaging in implantable cardioverter defibrillators (ICD) patients, mitigating hyperintensity artifacts. To address subendocardial scar visibility challenges, a 2D breath-hold single-shot electrocardiography-triggered black-blood (BB) LGE sequence was integrated with wideband imaging, enhancing scar-blood contrast. METHODS: Wideband BB, with increased bandwidth in the inversion pulse (0.8-3.8 kHz) and T2 preparation refocusing pulses (1.6-5.0 kHz), was compared with conventional and wideband PSIR, and conventional BB, in a phantom and sheep with and without ICD, and in six patients with cardiac devices and known myocardial injury. ICD artifact extent was quantified in the phantom and specific absorption rate (SAR) was reported for each sequence. Image contrast ratios were analyzed in both phantom and animal experiments. Expert radiologists assessed image quality, artifact severity, and scar segments in patients and sheep. Additionally, histology was performed on the sheep's heart. RESULTS: In the phantom, wideband BB reduced ICD artifacts by 62% compared to conventional BB while substantially improving scar-blood contrast, but with a SAR more than 24 times that of wideband PSIR. Similarly, the animal study demonstrated a considerable increase in scar-blood contrast with wideband BB, with superior scar detection compared with wideband PSIR, the latter confirmed by histology. In alignment with the animal study, wideband BB successfully eliminated severe ICD hyperintensity artifacts in all patients, surpassing wideband PSIR in image quality and scar detection. CONCLUSION: Wideband BB may play a crucial role in imaging ICD patients, offering images with reduced ICD artifacts and enhanced scar detection.

2.
J Magn Reson Imaging ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949101

RESUMEN

BACKGROUND: Myocardial T1-rho (T1ρ) mapping is a promising method for identifying and quantifying myocardial injuries without contrast agents, but its clinical use is hindered by the lack of dedicated analysis tools. PURPOSE: To explore the feasibility of clinically integrated artificial intelligence-driven analysis for efficient and automated myocardial T1ρ mapping. STUDY TYPE: Retrospective. POPULATION: Five hundred seventy-three patients divided into a training (N = 500) and a test set (N = 73) including ischemic and nonischemic cases. FIELD STRENGTH/SEQUENCE: Single-shot bSSFP T1ρ mapping sequence at 1.5 T. ASSESSMENT: The automated process included: left ventricular (LV) wall segmentation, right ventricular insertion point detection and creation of a 16-segment model for segmental T1ρ value analysis. Two radiologists (20 and 7 years of MRI experience) provided ground truth annotations. Interobserver variability and segmentation quality were assessed using the Dice coefficient with manual segmentation as reference standard. Global and segmental T1ρ values were compared. Processing times were measured. STATISTICAL TESTS: Intraclass correlation coefficients (ICCs) and Bland-Altman analysis (bias ±2SD); Paired Student's t-tests and one-way ANOVA. A P value <0.05 was considered significant. RESULTS: The automated approach significantly reduced processing time (3 seconds vs. 1 minute 51 seconds ± 22 seconds). In the test set, automated LV wall segmentation closely matched manual results (Dice 81.9% ± 9.0) and closely aligned with interobserver segmentation (Dice 82.2% ± 6.5). Excellent ICCs were achieved on a patient basis (0.94 [95% CI: 0.91 to 0.96]) with bias of -0.93 cm2 ± 6.60. There was no significant difference in global T1ρ values between manual (54.9 msec ± 4.6; 95% CI: 53.8 to 56.0 msec, range: 46.6-70.9 msec) and automated processing (55.4 msec ± 5.1; 95% CI: 54.2 to 56.6 msec; range: 46.4-75.1 msec; P = 0.099). The pipeline demonstrated a high level of agreement with manual-derived T1ρ values at the patient level (ICC = 0.85; bias +0.52 msec ± 5.18). No significant differences in myocardial T1ρ values were found between methods across the 16 segments (P = 0.75). DATA CONCLUSION: Automated myocardial T1ρ mapping shows promise for the rapid and noninvasive assessment of heart disease. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

3.
J Cardiovasc Magn Reson ; 26(1): 101037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38499269

RESUMEN

BACKGROUND: Free-running cardiac and respiratory motion-resolved whole-heart five-dimensional (5D) cardiovascular magnetic resonance (CMR) can reduce scan planning and provide a means of evaluating respiratory-driven changes in clinical parameters of interest. However, respiratory-resolved imaging can be limited by user-defined parameters which create trade-offs between residual artifact and motion blur. In this work, we develop and validate strategies for both correction of intra-bin and compensation of inter-bin respiratory motion to improve the quality of 5D CMR. METHODS: Each component of the reconstruction framework was systematically validated and compared to the previously established 5D approach using simulated free-running data (N = 50) and a cohort of 32 patients with congenital heart disease. The impact of intra-bin respiratory motion correction was evaluated in terms of image sharpness while inter-bin respiratory motion compensation was evaluated in terms of reconstruction error, compression of respiratory motion, and image sharpness. The full reconstruction framework (intra-acquisition correction and inter-acquisition compensation of respiratory motion [IIMC] 5D) was evaluated in terms of image sharpness and scoring of image quality by expert reviewers. RESULTS: Intra-bin motion correction provides significantly (p < 0.001) sharper images for both simulated and patient data. Inter-bin motion compensation results in significant (p < 0.001) lower reconstruction error, lower motion compression, and higher sharpness in both simulated (10/11) and patient (9/11) data. The combined framework resulted in significantly (p < 0.001) sharper IIMC 5D reconstructions (End-expiration (End-Exp): 0.45 ± 0.09, End-inspiration (End-Ins): 0.46 ± 0.10) relative to the previously established 5D implementation (End-Exp: 0.43 ± 0.08, End-Ins: 0.39 ± 0.09). Similarly, image scoring by three expert reviewers was significantly (p < 0.001) higher using IIMC 5D (End-Exp: 3.39 ± 0.44, End-Ins: 3.32 ± 0.45) relative to 5D images (End-Exp: 3.02 ± 0.54, End-Ins: 2.45 ± 0.52). CONCLUSION: The proposed IIMC reconstruction significantly improves the quality of 5D whole-heart MRI. This may be exploited for higher resolution or abbreviated scanning. Further investigation of the diagnostic impact of this framework and comparison to gold standards is needed to understand its full clinical utility, including exploration of respiratory-driven changes in physiological measurements of interest.


Asunto(s)
Artefactos , Cardiopatías Congénitas , Interpretación de Imagen Asistida por Computador , Valor Predictivo de las Pruebas , Humanos , Reproducibilidad de los Resultados , Femenino , Masculino , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Adulto , Adulto Joven , Imagen por Resonancia Magnética , Adolescente , Mecánica Respiratoria , Técnicas de Imagen Sincronizada Respiratorias , Niño , Persona de Mediana Edad , Respiración , Imagen por Resonancia Cinemagnética
4.
MAGMA ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907767

RESUMEN

Artificial intelligence (AI) integration in cardiac magnetic resonance imaging presents new and exciting avenues for advancing patient care, automating post-processing tasks, and enhancing diagnostic precision and outcomes. The use of AI significantly streamlines the examination workflow through the reduction of acquisition and postprocessing durations, coupled with the automation of scan planning and acquisition parameters selection. This has led to a notable improvement in examination workflow efficiency, a reduction in operator variability, and an enhancement in overall image quality. Importantly, AI unlocks new possibilities to achieve spatial resolutions that were previously unattainable in patients. Furthermore, the potential for low-dose and contrast-agent-free imaging represents a stride toward safer and more patient-friendly diagnostic procedures. Beyond these benefits, AI facilitates precise risk stratification and prognosis evaluation by adeptly analysing extensive datasets. This comprehensive review article explores recent applications of AI in the realm of cardiac magnetic resonance imaging, offering insights into its transformative potential in the field.

5.
Radiology ; 308(3): e230462, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37668517

RESUMEN

Background At follow-up CT after left atrial appendage occlusion (LAAO), hypoattenuation thickening (HAT) on the atrial aspect of the device is a common finding but the clinical implications require further study. Purpose To assess the association of HAT grade at follow-up CT with clinical characteristics and outcomes in patients who underwent LAAO. Materials and Methods This prospective study included consecutive participants with atrial fibrillation and who were at high risk for stroke (CHA2DS2-VASc score ≥4) who underwent LAAO and were administered pacifier or nonpacifier devices at two French medical centers between January 2012 and November 2020. Postprocedure CT images were evaluated by two radiologists in consensus and device-specific interpretation algorithms were applied to classify HAT as low grade (low suspicion of thrombosis) or high grade (high suspicion of thrombosis). The association between HAT grade and clinical characteristics was assessed using multinomial logistic regression, and variables associated with risk of stroke were assessed using a Cox proportional hazard model. Results This study included 412 participants (mean age, 76 years ± 8 [SD]; 284 male participants) who underwent follow-up CT at a mean of 4.2 months ± 1.7 after LAAO. Low-grade and high-grade HAT were depicted in 98 of 412 (23.8%) and 21 of 412 (5.1%) participants, respectively. High-grade HAT was associated with higher odds of antithrombotic drug discontinuation during follow-up (odds ratio, 9.5; 95% CI: 3.1, 29.1; P < .001), whereas low-grade HAT was associated with lower odds of persisting left atrial appendage patency (odds ratio, 0.46; 95% CI: 0.27, 0.79; P = .005). During a median follow-up of 17 months (IQR, 11-41 months), stroke occurred in 24 of 412 (5.8%) participants. High-grade HAT was associated with stroke (hazard ratio, 4.6; 95% CI: 1.5, 14.0; P = .008) and low-grade HAT (P = .62) was not. Conclusion Low-grade HAT was a more common finding at CT performed after LAAO CT (24%) than was high-grade HAT (5%), but it was associated with more favorable outcomes than high-grade HAT, which was associated with higher stroke risk. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Choe in this issue.


Asunto(s)
Apéndice Atrial , Accidente Cerebrovascular , Humanos , Masculino , Anciano , Apéndice Atrial/diagnóstico por imagen , Apéndice Atrial/cirugía , Estudios Prospectivos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/etiología , Atrios Cardíacos , Tomografía Computarizada por Rayos X
6.
J Cardiovasc Magn Reson ; 25(1): 34, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37331930

RESUMEN

The potential of cardiac magnetic resonance to improve cardiovascular care and patient management is considerable. Myocardial T1-rho (T1ρ) mapping, in particular, has emerged as a promising biomarker for quantifying myocardial injuries without exogenous contrast agents. Its potential as a contrast-agent-free ("needle-free") and cost-effective diagnostic marker promises high impact both in terms of clinical outcomes and patient comfort. However, myocardial T1ρ mapping is still at a nascent stage of development and the evidence supporting its diagnostic performance and clinical effectiveness is scant, though likely to change with technological improvements. The present review aims at providing a primer on the essentials of myocardial T1ρ mapping, and to describe the current range of clinical applications of the technique to detect and quantify myocardial injuries. We also delineate the important limitations and challenges for clinical deployment, including the urgent need for standardization, the evaluation of bias, and the critical importance of clinical testing. We conclude by outlining technical developments to be expected in the future. If needle-free myocardial T1ρ mapping is shown to improve patient diagnosis and prognosis, and can be effectively integrated in cardiovascular practice, it will fulfill its potential as an essential component of a cardiac magnetic resonance examination.


Asunto(s)
Infarto del Miocardio , Humanos , Infarto del Miocardio/patología , Valor Predictivo de las Pruebas , Miocardio/patología , Imagen por Resonancia Magnética/métodos , Medios de Contraste , Espectroscopía de Resonancia Magnética
7.
Europace ; 25(2): 487-495, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36355748

RESUMEN

AIMS: Assess prevalence, risk factors, and management of patients with intra-cardiac thrombus referred for scar-related ventricular tachycardia (VT) ablation. METHODS AND RESULTS: Consecutive VT ablation referrals between January 2015 and December 2019 were reviewed (n = 618). Patients referred for de novo, scar-related VT ablation who underwent pre-procedure cardiac computed tomography (cCT) were included. We included 401 patients [61 ± 14 years; 364 male; left ventricular ejection fraction (LVEF) 40 ± 13%]; 45 patients (11%) had cardiac thrombi on cCT at 49 sites [29 LV; eight left atrial appendage (LAA); eight right ventricle (RV); four right atrial appendage]. Nine patients had pulmonary emboli. Overall predictors of cardiac thrombus included LV aneurysm [odds ratio (OR): 6.6, 95%, confidence interval (CI): 3.1-14.3], LVEF < 40% (OR: 3.3, CI: 1.5-7.3), altered RV ejection fraction (OR: 2.3, CI: 1.1-4.6), and electrical storm (OR: 2.9, CI: 1.4-6.1). Thrombus location-specific analysis identified LV aneurysm (OR: 10.9, CI: 4.3-27.7) and LVEF < 40% (OR: 9.6, CI: 2.6-35.8) as predictors of LV thrombus and arrhythmogenic right ventricular cardiomyopathy (OR: 10.6, CI: 1.2-98.4) as a predictor for RV thrombus. Left atrial appendage thrombi exclusively occurred in patients with atrial fibrillation. Ventricular tachycardia ablation was finally performed in 363 including 7 (16%) patients with thrombus but refractory electrical storm. These seven patients had tailored ablation with no embolic complications. Only one (0.3%) ablation-related embolic event occurred in the entire cohort. CONCLUSION: Cardiac thrombus can be identified in 11% of patients referred for scar-related VT ablation. These findings underscore the importance of systematic thrombus screening to minimize embolic risk.


Asunto(s)
Ablación por Catéter , Cardiopatías , Taquicardia Ventricular , Trombosis , Humanos , Masculino , Taquicardia Ventricular/epidemiología , Taquicardia Ventricular/cirugía , Taquicardia Ventricular/diagnóstico , Volumen Sistólico , Prevalencia , Cicatriz , Función Ventricular Izquierda , Cardiopatías/diagnóstico por imagen , Cardiopatías/epidemiología , Cardiopatías/complicaciones , Trombosis/diagnóstico por imagen , Trombosis/epidemiología , Ablación por Catéter/efectos adversos , Factores de Riesgo , Resultado del Tratamiento
8.
MAGMA ; 36(6): 877-885, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37294423

RESUMEN

OBJECTIVE: To simplify black-blood late gadolinium enhancement (BL-LGE) cardiac imaging in clinical practice using an image-based algorithm for automated inversion time (TI) selection. MATERIALS AND METHODS: The algorithm selects from BL-LGE TI scout images, the TI corresponding to the image with the highest number of sub-threshold pixels within a region of interest (ROI) encompassing the blood-pool and myocardium. The threshold value corresponds to the most recurrent pixel intensity of all scout images within the ROI. ROI dimensions were optimized in 40 patients' scans. The algorithm was validated retrospectively (80 patients) versus two experts and tested prospectively (5 patients) on a 1.5 T clinical scanner. RESULTS: Automated TI selection took ~ 40 ms per dataset (manual: ~ 17 s). Fleiss' kappa coefficient for automated-manual, intra-observer and inter-observer agreements were [Formula: see text]= 0.73, [Formula: see text] = 0.70 and [Formula: see text] = 0.63, respectively. The agreement between the algorithm and any expert was better than the agreement between the two experts or between two selections of one expert. DISCUSSION: Thanks to its good performance and simplicity of implementation, the proposed algorithm is a good candidate for automated BL-LGE imaging in clinical practice.


Asunto(s)
Medios de Contraste , Gadolinio , Humanos , Estudios Retrospectivos , Corazón/diagnóstico por imagen , Miocardio , Imagen por Resonancia Magnética/métodos
9.
Curr Cardiol Rep ; 25(6): 535-542, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37115434

RESUMEN

PURPOSE OF REVIEW: Imaging plays a crucial role in the therapy of ventricular tachycardia (VT). We offer an overview of the different methods and provide information on their use in a clinical setting. RECENT FINDINGS: The use of imaging in VT has progressed recently. Intracardiac echography facilitates catheter navigation and the targeting of moving intracardiac structures. Integration of pre-procedural CT or MRI allows for targeting the VT substrate, with major expected impact on VT ablation efficacy and efficiency. Advances in computational modeling may further enhance the performance of imaging, giving access to pre-operative simulation of VT. These advances in non-invasive diagnosis are increasingly being coupled with non-invasive approaches for therapy delivery. This review highlights the latest research on the use of imaging in VT procedures. Image-based strategies are progressively shifting from using images as an adjunct tool to electrophysiological techniques, to an integration of imaging as a central element of the treatment strategy.


Asunto(s)
Ablación por Catéter , Taquicardia Ventricular , Humanos , Taquicardia Ventricular/diagnóstico por imagen , Taquicardia Ventricular/cirugía , Arritmias Cardíacas , Corazón , Frecuencia Cardíaca , Ablación por Catéter/métodos , Resultado del Tratamiento
10.
J Cardiovasc Electrophysiol ; 33(5): 908-916, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35274776

RESUMEN

INTRODUCTION: Due to changes in esophageal position, preoperative assessment of the esophageal location may not mitigate the risk of esophageal injury in catheter ablation for atrial fibrillation (AF). This study aimed to assess esophageal motion and its impact on AF ablation strategies. METHODS AND RESULTS: Ninety-seven AF patients underwent two computed tomography (CT) scans. The area at risk of esophageal injury (AAR) was defined as the left atrial surface ≤3 mm from the esophagus. On CT1, ablation lines were drawn blinded to the esophageal location to create three ablation sets: individual pulmonary vein isolation (PVI), wide antral circumferential ablation (WACA), and WACA with linear ablation (WACA + L). Thereafter, ablation lines for WACA and WACA + L were personalized to avoid the AAR. Rigid registration was performed to align CT1 onto CT2, and the relationship between ablation lines and the AAR on CT2 was analyzed. The esophagus moved by 3.6 [2.7 to 5.5] mm. The AAR on CT2 was 8.6 ± 3.3 cm2 , with 77% overlapping that on CT1. High body mass index was associated with the AAR mismatch (standardized ß 0.382, p < .001). Without personalization, AARs on ablation lines for individual PVI, WACA, and WACA + L were 0 [0-0.4], 0.8 [0.5-1.2], and 1.7 [1.2-2.0] cm2 . Despite the esophageal position change, the personalization of ablation lines for WACA and WACA + L reduced the AAR on lines to 0 [0-0.5] and 0.7 [0.3-1.0] cm2 (p < .001 for both). CONCLUSION: The personalization of ablation lines based on a preoperative CT reduced ablation to the AAR despite changes in esophageal position.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Venas Pulmonares , Fibrilación Atrial/diagnóstico por imagen , Fibrilación Atrial/cirugía , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Esófago/lesiones , Humanos , Venas Pulmonares/diagnóstico por imagen , Venas Pulmonares/cirugía , Resultado del Tratamiento
11.
J Magn Reson Imaging ; 55(4): 967-987, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34155715

RESUMEN

In cardiovascular magnetic resonance, late gadolinium enhancement (LGE) has become the cornerstone of myocardial tissue characterization. It is widely used in clinical routine to diagnose and characterize the myocardial tissue in a wide range of ischemic and nonischemic cardiomyopathies. The recent growing interest in imaging left atrial fibrosis has led to the development of novel whole-heart high-resolution late gadolinium enhancement (HR-LGE) techniques. Indeed, conventional LGE is acquired in multiple breath-holds with limited spatial resolution: ~1.4-1.8 mm in plane and 6-8 mm slice thickness, according to the Society for Cardiovascular Magnetic Resonance standardized guidelines. Such large voxel size prevents its use in thin structures such as the atrial or right ventricular walls. Whole-heart 3D HR-LGE images are acquired in free breathing to increase the spatial resolution (up to 1.3 × 1.3 × 1.3 mm3 ) and offer a better detection and depiction of focal atrial fibrosis. The downside of this increased resolution is the extended scan time of around 10 min, which hampers the spread of HR-LGE in clinical practice. Initially introduced for atrial fibrosis imaging, HR-LGE interest has evolved to be a tool to detect small scars in the ventricles and guide ablation procedures. Indeed, the detection of scars, nonvisible with conventional LGE, can be crucial in the diagnosis of myocardial infarction with nonobstructed coronary arteries, in the detection of the arrhythmogenic substrate triggering ventricular arrhythmia, and improve the confidence of clinicians in the challenging diagnoses such as the arrhythmogenic right ventricular cardiomyopathy. HR-LGE also offers a precise visualization of left ventricular scar morphology that is particularly useful in planning ablation procedures and guiding them through the fusion of HR-LGE images with electroanatomical mapping systems. In this narrative review, we attempt to summarize the technical particularities of whole-heart HR-LGE acquisition and provide an overview of its clinical applications with a particular focus on the ventricles. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Medios de Contraste , Gadolinio , Cicatriz , Fibrosis , Humanos , Imagen por Resonancia Magnética , Valor Predictivo de las Pruebas
12.
J Cardiovasc Magn Reson ; 24(1): 26, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35399091

RESUMEN

BACKGROUND: Coronary artery disease (CAD) is the single most common cause of death worldwide. Recent technological developments with coronary cardiovascular magnetic resonance angiography (CCMRA) allow high-resolution free-breathing imaging of the coronary arteries at submillimeter resolution without contrast in a predictable scan time of ~ 10 min. The objective of this study was to determine the diagnostic accuracy of high-resolution CCMRA for CAD detection against the gold standard of invasive coronary angiography (ICA). METHODS: Forty-five patients (15 female, 62 ± 10 years) with suspected CAD underwent sub-millimeter-resolution (0.6 mm3) non-contrast CCMRA at 1.5T in this prospective clinical study from 2019-2020. Prior to CCMR, patients were given an intravenous beta blockers to optimize heart rate control and sublingual glyceryl trinitrate to promote coronary vasodilation. Obstructive CAD was defined by lesions with ≥ 50% stenosis by quantitative coronary angiography on ICA. RESULTS: The mean duration of image acquisition was 10.4 ± 2.1 min. On a per patient analysis, the sensitivity, specificity, positive predictive value and negative predictive value (95% confidence intervals) were 95% (75-100), 54% (36-71), 60% (42-75) and 93% (70-100), respectively. On a per vessel analysis the sensitivity, specificity, positive predictive value and negative predictive value (95% confidence intervals) were 80% (63-91), 83% (77-88), 49% (36-63) and 95% (90-98), respectively. CONCLUSION: As an important step towards clinical translation, we demonstrated a good diagnostic accuracy for CAD detection using high-resolution CCMRA, with high sensitivity and negative predictive value. The positive predictive value is moderate, and combination with CMR stress perfusion may improve the diagnostic accuracy. Future multicenter evaluation is now required.


Asunto(s)
Enfermedad de la Arteria Coronaria , Estenosis Coronaria , Imagen de Perfusión Miocárdica , Angiografía Coronaria/métodos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/patología , Femenino , Humanos , Angiografía por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Imagen de Perfusión Miocárdica/métodos , Valor Predictivo de las Pruebas , Estudios Prospectivos , Sensibilidad y Especificidad
13.
Radiology ; 298(3): 578-586, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33464179

RESUMEN

Background Clinical guidelines recommend the use of established T2 mapping sequences to detect and quantify myocarditis and edema, but T2 mapping is performed in two dimensions with limited coverage and repetitive breath holds. Purpose To assess the reproducibility of an accelerated free-breathing three-dimensional (3D) whole-heart T2 MRI mapping sequence in phantoms and participants without a history of cardiac disease and to investigate its clinical performance in participants with suspected myocarditis. Materials and Methods Eight participants (three women, mean age, 31 years ± 4 [standard deviation]; cohort 1) without a history of cardiac disease and 25 participants (nine women, mean age, 45 years ± 17; cohort 2) with clinically suspected myocarditis underwent accelerated free-breathing 3D whole-heart T2 mapping with 100% respiratory scanning efficiency at 1.5 T. The participants were enrolled from November 2018 to August 2020. Three repeated scans were performed on 2 separate days in cohort 1. Segmental variations in T2 relaxation times of the left ventricular myocardium were assessed, and intrasession and intersession reproducibility were measured. In cohort 2, segmental myocardial T2 values, detection of focal inflammation, and map quality were compared with those obtained from clinical breath-hold two-dimensional (2D) T2 mapping. Statistical differences were assessed using the nonparametric Mann-Whitney and Kruskal-Wallis tests, whereas the paired Wilcoxon signed-rank test was used to assess subjective scores. Results Whole-heart T2 maps were acquired in a mean time of 6 minutes 53 seconds ± 1 minute 5 seconds at 1.5 mm3 resolution. Breath-hold 2D and free-breathing 3D T2 mapping had similar intrasession (mean T2 change of 3.2% and 2.3% for 2D and 3D, respectively) and intersession (4.8% and 4.9%, respectively) reproducibility. The two T2 mapping sequences showed similar map quality (P = .23, cohort 2). Abnormal myocardial segments were identified with confidence (score 3) in 14 of 25 participants (56%) with 3D T2 mapping and only in 10 of 25 participants (40%) with 2D T2 mapping. Conclusion High-spatial-resolution three-dimensional (3D) whole-heart T2 mapping shows high intrasession and intersession reproducibility and helps provide T2 myocardial characterization in agreement with clinical two-dimensional reference, while enabling 3D assessment of focal disease with higher confidence. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Friedrich in this issue.


Asunto(s)
Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Miocarditis/diagnóstico por imagen , Adulto , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Fantasmas de Imagen , Estudios Prospectivos , Reproducibilidad de los Resultados
14.
Magn Reson Med ; 86(5): 2837-2852, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34240753

RESUMEN

PURPOSE: To develop and evaluate a novel and generalizable super-resolution (SR) deep-learning framework for motion-compensated isotropic 3D coronary MR angiography (CMRA), which allows free-breathing acquisitions in less than a minute. METHODS: Undersampled motion-corrected reconstructions have enabled free-breathing isotropic 3D CMRA in ~5-10 min acquisition times. In this work, we propose a deep-learning-based SR framework, combined with non-rigid respiratory motion compensation, to shorten the acquisition time to less than 1 min. A generative adversarial network (GAN) is proposed consisting of two cascaded Enhanced Deep Residual Network generator, a trainable discriminator, and a perceptual loss network. A 16-fold increase in spatial resolution is achieved by reconstructing a high-resolution (HR) isotropic CMRA (0.9 mm3 or 1.2 mm3 ) from a low-resolution (LR) anisotropic CMRA (0.9 × 3.6 × 3.6 mm3 or 1.2 × 4.8 × 4.8 mm3 ). The impact and generalization of the proposed SRGAN approach to different input resolutions and operation on image and patch-level is investigated. SRGAN was evaluated on a retrospective downsampled cohort of 50 patients and on 16 prospective patients that were scanned with LR-CMRA in ~50 s under free-breathing. Vessel sharpness and length of the coronary arteries from the SR-CMRA is compared against the HR-CMRA. RESULTS: SR-CMRA showed statistically significant (P < .001) improved vessel sharpness 34.1% ± 12.3% and length 41.5% ± 8.1% compared with LR-CMRA. Good generalization to input resolution and image/patch-level processing was found. SR-CMRA enabled recovery of coronary stenosis similar to HR-CMRA with comparable qualitative performance. CONCLUSION: The proposed SR-CMRA provides a 16-fold increase in spatial resolution with comparable image quality to HR-CMRA while reducing the predictable scan time to <1 min.


Asunto(s)
Aprendizaje Profundo , Angiografía Coronaria , Vasos Coronarios/diagnóstico por imagen , Corazón , Humanos , Imagenología Tridimensional , Angiografía por Resonancia Magnética , Estudios Prospectivos , Estudios Retrospectivos
15.
Magn Reson Med ; 85(4): 2069-2083, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33201524

RESUMEN

PURPOSE: To develop a novel gadolinium-free model-based quantitative magnetization transfer (qMT) technique to assess macromolecular changes associated with myocardial fibrosis. METHODS: The proposed sequence consists of a two-dimensional breath-held dual shot interleaved acquisition of five MT-weighted (MTw) spoiled gradient echo images, with variable MT flip angles (FAs) and off-resonance frequencies. A two-pool exchange model and dictionary matching were used to quantify the pool size ratio (PSR) and bound pool T2 relaxation ( T2B ). The signal model was developed and validated using 25 MTw images on a bovine serum albumin (BSA) phantom and in vivo human thigh muscle. A protocol with five MTw images was optimized for single breath-hold cardiac qMT imaging. The proposed sequence was tested in 10 healthy subjects and 5 patients with myocardial fibrosis and compared to late gadolinium enhancement (LGE). RESULTS: PSR values in the BSA phantom were within the confidence interval of previously reported values (concentration 10% BSA = 5.9 ± 0.1%, 15% BSA = 9.4 ± 0.2%). PSR and T2B in thigh muscle were also in agreement with literature (PSR = 10.9 ± 0.3%, T2B = 6.4 ± 0.4 us). In 10 healthy subjects, global left ventricular PSR was 4.30 ± 0.65%. In patients, PSR was reduced in areas associated with LGE (remote: 4.68 ± 0.70% vs. fibrotic: 3.12 ± 0.78 %, n = 5, P < .002). CONCLUSION: In vivo model-based qMT mapping of the heart was performed for the first time, with promising results for non-contrast enhanced assessment of myocardial fibrosis.


Asunto(s)
Cardiomiopatías , Medios de Contraste , Cardiomiopatías/diagnóstico por imagen , Fibrosis , Gadolinio , Humanos , Imagen por Resonancia Magnética
16.
NMR Biomed ; 34(1): e4409, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32974984

RESUMEN

PURPOSE: To develop a novel fast water-selective free-breathing 3D Cartesian cardiac CINE scan with full self-navigation and isotropic whole-heart (WH) coverage. METHODS: A free-breathing 3D Cartesian cardiac CINE scan with a water-selective balanced steady-state free precession and a continuous (non-ECG-gated) variable-density Cartesian sampling with spiral profile ordering, out-inward sampling and acquisition-adaptive alternating tiny golden and golden angle increment between spiral arms is proposed. Data is retrospectively binned based on respiratory and cardiac self-navigation signals. A translational respiratory-motion-corrected and cardiac-motion-resolved image is reconstructed with a multi-bin patch-based low-rank reconstruction (MB-PROST) within about 15 min. A respiratory-motion-resolved approach is also investigated. The proposed 3D Cartesian cardiac CINE is acquired in sagittal orientation in 1 min 50 s for 1.9 mm3 isotropic WH coverage. Left ventricular (LV) function parameters and image quality derived from a blinded reading of the proposed 3D CINE framework are compared against conventional multi-slice 2D CINE imaging in 10 healthy subjects and 10 patients with suspected cardiovascular disease. RESULTS: The proposed framework provides free-breathing 3D cardiac CINE images with 1.9 mm3 spatial and about 45 ms temporal resolution in a short acquisition time (<2 min). LV function parameters derived from 3D CINE were in good agreement with 2D CINE (10 healthy subjects and 10 patients). Bias and confidence intervals were obtained for end-systolic volume, end-diastolic volume and ejection fraction of 0.1 ± 3.5 mL, -0.6 ± 8.2 mL and -0.1 ± 2.2%, respectively. CONCLUSION: The proposed framework enables isotropic 3D Cartesian cardiac CINE under free breathing for fast assessment of cardiac anatomy and function.


Asunto(s)
Corazón/diagnóstico por imagen , Imagenología Tridimensional , Imagen por Resonancia Cinemagnética , Adulto , Diástole/fisiología , Femenino , Corazón/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Respiración , Volumen Sistólico/fisiología , Sístole/fisiología , Función Ventricular Izquierda/fisiología
17.
J Magn Reson Imaging ; 53(4): 1253-1265, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33124081

RESUMEN

BACKGROUND: Dixon cardiac magnetic resonance fingerprinting (MRF) has been recently introduced to simultaneously provide water T1 , water T2 , and fat fraction (FF) maps. PURPOSE: To assess Dixon cardiac MRF repeatability in healthy subjects and its clinical feasibility in a cohort of patients with cardiovascular disease. POPULATION: T1MES phantom, water-fat phantom, 11 healthy subjects and 19 patients with suspected cardiovascular disease. STUDY TYPE: Prospective. FIELD STRENGTH/SEQUENCE: 1.5T, inversion recovery spin echo (IRSE), multiecho spin echo (MESE), modified Look-Locker inversion recovery (MOLLI), T2 gradient spin echo (T2 -GRASE), 6-echo gradient rewound echo (GRE), and Dixon cardiac MRF. ASSESSMENT: Dixon cardiac MRF precision was assessed through repeated scans against conventional MOLLI, T2 -GRASE, and PDFF in phantom and 11 healthy subjects. Dixon cardiac MRF native T1 , T2 , FF, postcontrast T1 and synthetic extracellular volume (ECV) maps were assessed in 19 patients in comparison to conventional sequences. Measurements in patients were performed in the septum and in late gadolinium enhanced (LGE) areas and assessed using mean value distributions, correlation, and Bland-Altman plots. Image quality and diagnostic confidence were assessed by three experts using 5-point scoring scales. STATISTICAL TESTS: Paired Wilcoxon rank signed test and paired t-tests were applied. Statistical significance was indicated by *(P < 0.05). RESULTS: Dixon cardiac MRF showed good overall precision in phantom and in vivo. Septal average repeatability was ~23 msec for T1 , ~2.2 msec for T2 , and ~1% for FF. Biases in healthy subjects/patients were measured at +37 msec*/+60 msec* and -8.8 msec*/-8 msec* when compared to MOLLI and T2 -GRASE, respectively. No statistically significant differences in postcontrast T1 (P = 0.17) and synthetic ECV (P = 0.19) measurements were observed in patients. DATA CONCLUSION: Dixon cardiac MRF attained good overall precision in phantom and healthy subjects, while providing coregistered T1 , T2 , and fat fraction maps in a single breath-hold scan with similar or better image quality than conventional methods in patients. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Corazón/diagnóstico por imagen , Humanos , Fantasmas de Imagen , Estudios Prospectivos , Reproducibilidad de los Resultados
18.
J Cardiovasc Magn Reson ; 23(1): 119, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34670572

RESUMEN

BACKGROUND: Cardiovascular magnetic resonance T1ρ mapping may detect myocardial injuries without exogenous contrast agent. However, multiple co-registered acquisitions are required, and the lack of robust motion correction limits its clinical translation. We introduce a single breath-hold myocardial T1ρ mapping method that includes model-based non-rigid motion correction. METHODS: A single-shot electrocardiogram (ECG)-triggered balanced steady state free precession (bSSFP) 2D adiabatic T1ρ mapping sequence that collects five T1ρ-weighted (T1ρw) images with different spin lock times within a single breath-hold is proposed. To address the problem of residual respiratory motion, a unified optimization framework consisting of a joint T1ρ fitting and model-based non-rigid motion correction algorithm, insensitive to contrast change, was implemented inline for fast (~ 30 s) and direct visualization of T1ρ maps. The proposed reconstruction was optimized on an ex vivo human heart placed on a motion-controlled platform. The technique was then tested in 8 healthy subjects and validated in 30 patients with suspected myocardial injury on a 1.5T CMR scanner. The Dice similarity coefficient (DSC) and maximum perpendicular distance (MPD) were used to quantify motion and evaluate motion correction. The quality of T1ρ maps was scored. In patients, T1ρ mapping was compared to cine imaging, T2 mapping and conventional post-contrast 2D late gadolinium enhancement (LGE). T1ρ values were assessed in remote and injured areas, using LGE as reference. RESULTS: Despite breath holds, respiratory motion throughout T1ρw images was much larger in patients than in healthy subjects (5.1 ± 2.7 mm vs. 0.5 ± 0.4 mm, P < 0.01). In patients, the model-based non-rigid motion correction improved the alignment of T1ρw images, with higher DSC (87.7 ± 5.3% vs. 82.2 ± 7.5%, P < 0.01), and lower MPD (3.5 ± 1.9 mm vs. 5.1 ± 2.7 mm, P < 0.01). This resulted in significantly improved quality of the T1ρ maps (3.6 ± 0.6 vs. 2.1 ± 0.9, P < 0.01). Using this approach, T1ρ mapping could be used to identify LGE in patients with 93% sensitivity and 89% specificity. T1ρ values in injured (LGE positive) areas were significantly higher than in the remote myocardium (68.4 ± 7.9 ms vs. 48.8 ± 6.5 ms, P < 0.01). CONCLUSIONS: The proposed motion-corrected T1ρ mapping framework enables a quantitative characterization of myocardial injuries with relatively low sensitivity to respiratory motion. This technique may be a robust and contrast-free adjunct to LGE for gaining new insight into myocardial structural disorders.


Asunto(s)
Medios de Contraste , Infarto del Miocardio , Gadolinio , Humanos , Imagen por Resonancia Magnética , Imagen por Resonancia Cinemagnética , Miocardio , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
19.
J Cardiovasc Magn Reson ; 23(1): 57, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33993890

RESUMEN

BACKGROUND: The widespread clinical application of coronary cardiovascular magnetic resonance (CMR) angiography (CMRA) for the assessment of coronary artery disease (CAD) remains limited due to low scan efficiency leading to prolonged and unpredictable acquisition times; low spatial-resolution; and residual respiratory motion artefacts resulting in limited image quality. To overcome these limitations, we have integrated highly undersampled acquisitions with image-based navigators and non-rigid motion correction to enable high resolution (sub-1 mm3) free-breathing, contrast-free 3D whole-heart coronary CMRA with 100% respiratory scan efficiency in a clinically feasible and predictable acquisition time. OBJECTIVES: To evaluate the diagnostic performance of this coronary CMRA framework against coronary computed tomography angiography (CTA) in patients with suspected CAD. METHODS: Consecutive patients (n = 50) with suspected CAD were examined on a 1.5T CMR scanner. We compared the diagnostic accuracy of coronary CMRA against coronary CTA for detecting a ≥ 50% reduction in luminal diameter. RESULTS: The 50 recruited patients (55 ± 9 years, 33 male) completed coronary CMRA in 10.7 ± 1.4 min. Twelve (24%) had significant CAD on coronary CTA. Coronary CMRA obtained diagnostic image quality in 95% of all, 97% of proximal, 97% of middle and 90% of distal coronary segments. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy were: per patient (100%, 74%, 55%, 100% and 80%), per vessel (81%, 88%, 46%, 97% and 88%) and per segment (76%, 95%, 44%, 99% and 94%) respectively. CONCLUSIONS: The high diagnostic image quality and diagnostic performance of coronary CMRA compared against coronary CTA demonstrates the potential of coronary CMRA as a robust and safe non-invasive alternative for excluding significant disease in patients at low-intermediate risk of CAD.


Asunto(s)
Angiografía por Tomografía Computarizada , Enfermedad de la Arteria Coronaria , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Femenino , Humanos , Angiografía por Resonancia Magnética , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas
20.
Magn Reson Med ; 84(6): 3009-3026, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32544278

RESUMEN

PURPOSE: To develop a free-breathing isotropic-resolution whole-heart joint T1 and T2 mapping sequence with Dixon-encoding that provides coregistered 3D T1 and T2 maps and complementary 3D anatomical water and fat images in a single ~9 min scan. METHODS: Four interleaved dual-echo Dixon gradient echo volumes are acquired with a variable density Cartesian trajectory and different preparation pulses: 1) inversion recovery-preparation, 2) and 3) no preparations, and 4) T2 preparation. Image navigators are acquired to correct each echo for 2D translational respiratory motion; the 8 echoes are jointly reconstructed with a low-rank patch-based reconstruction. A water/fat separation algorithm is used to obtain water and fat images for each acquired volume. T1 and T2 maps are generated by matching the signal evolution of the water images to a simulated dictionary. Complementary bright-blood and fat volumes for anatomical visualization are obtained from the T2 -prepared dataset. The proposed sequence was tested in phantom experiments and 10 healthy subjects and compared to standard 2D MOLLI T1 mapping, 2D balance steady-state free precession T2 mapping, and 3D T2 -prepared Dixon coronary MR angiography. RESULTS: High linear correlation was found between T1 and T2 quantification with the proposed approach and phantom spin echo measurements (y = 1.1 × -11.68, R2 = 0.98; and y = 0.85 × +5.7, R2 = 0.99). Mean myocardial values of T1 /T2 = 1116 ± 30.5 ms/45.1 ± 2.38 ms were measured in vivo. Biases of T1 /T2 = 101.8 ms/-0.77 ms were obtained compared to standard 2D techniques. CONCLUSION: The proposed joint T1 /T2 sequence permitted the acquisition of motion-compensated isotropic-resolution 3D T1 and T2 maps and complementary coronary MR angiography and fat volumes, showing promising results in terms of T1 and T2 quantification and visualization of cardiac anatomy and pericardial fat.


Asunto(s)
Imagenología Tridimensional , Agua , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Fantasmas de Imagen , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA