Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Semin Cell Dev Biol ; 78: 3-12, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28751251

RESUMEN

An ever-increasing number of studies highlight the role of cancer secretome in the modification of tumour microenvironment and in the acquisition of cancer cell resistance to therapeutic drugs. The knowledge of the mechanisms underlying the relationship between cancer cell-secreted factors and chemoresistance is becoming fundamental for the identification of novel anticancer therapeutic strategies overcoming drug resistance and novel prognostic secreted biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells compromising drug sensitivity. In particular, we highlight data from available literature describing the involvement of cancer cell-secreted molecules determining chemoresistance in an autocrine manner, including: i) growth factors; ii) glycoproteins; iii) inflammatory cytokines; iv) enzymes and chaperones; and v) tumor-derived exosomes.


Asunto(s)
Antineoplásicos/uso terapéutico , Comunicación Autocrina/fisiología , Resistencia a Antineoplásicos/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteoma/metabolismo , Citocinas/metabolismo , Resistencia a Antineoplásicos/fisiología , Humanos , Proteoma/genética , Microambiente Tumoral
2.
Biochim Biophys Acta Rev Cancer ; 1867(1): 19-28, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27871965

RESUMEN

An increasing number of studies highlight the role of mutant p53 proteins in cancer cell growth and in the worsening of cancer patients' clinical outcome. Autophagy has been widely recognized as a main biological event involved in both the regulation of cancer cell proliferation and in the response of several anticancer drugs. A thorough analysis of scientific literature underlines the reciprocal interplay between mutant p53 proteins and autophagy regulation. In this review, we analytically summarize recent findings, which indicate that gain-of-function (GOF) mutant p53 proteins counteract the autophagic machinery by various molecular mechanisms including the regulation of AMPK and Akt/mTOR pathways, autophagy-related genes (ATGs), HIF-1α target genes, and the mitochondrial citrate carrier CIC. Moreover, we report that mutant p53 protein stability is affected by lysosome-mediated degradation through macroautophagy or chaperone-mediated autophagy, suggesting the use of autophagy stimulators to counteract mutant p53 oncogenic activity. Finally, we discuss the functional role of the interplay between mutant p53 proteins and autophagy in cancer progression, a fundamental knowledge to design more effective therapies against cancers bearing mutant TP53 gene.


Asunto(s)
Autofagia/genética , Proteínas Mutantes/genética , Mutación/genética , Proteína p53 Supresora de Tumor/genética , Proliferación Celular/genética , Humanos
3.
Int J Mol Sci ; 20(9)2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-31027346

RESUMEN

Several studies indicate that the cytosolic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has pleiotropic functions independent of its canonical role in glycolysis. The GAPDH functional diversity is mainly due to post-translational modifications in different amino acid residues or due to protein-protein interactions altering its localization from cytosol to nucleus, mitochondria or extracellular microenvironment. Non-glycolytic functions of GAPDH include the regulation of cell death, autophagy, DNA repair and RNA export, and they are observed in physiological and pathological conditions as cancer and neurodegenerative disorders. In disease, the knowledge of the mechanisms regarding GAPDH-mediated cell death is becoming fundamental for the identification of novel therapies. Here, we elucidate the correlation between autophagy and GAPDH in cancer, describing the molecular mechanisms involved and its impact in cancer development. Since autophagy is a degradative pathway associated with the regulation of cell death, we discuss recent evidence supporting GAPDH as a therapeutic target for autophagy regulation in cancer therapy. Furthermore, we summarize the molecular mechanisms and the cellular effects of GAPDH aggregates, which are correlated with mitochondrial malfunctions and can be considered a potential therapeutic target for various diseases, including cancer and neurodegenerative disorders.


Asunto(s)
Autofagia/fisiología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Humanos , Modelos Biológicos
4.
Br J Cancer ; 119(8): 994-1008, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30318520

RESUMEN

BACKGROUND: The TP53 tumor suppressor gene is the most frequently altered gene in tumors and mutant p53 gain-of-function isoforms actively promote cancer malignancy. METHODS: A panel of wild-type and mutant p53 cancer cell lines of different tissues, including pancreas, breast, skin, and lung were used, as well as chronic lymphocytic leukemia (CLL) patients with different TP53 gene status. The effects of mutant p53 were evaluated by confocal microscopy, reactive oxygen species production assay, immunoblotting, and quantitative reverse transcription polymerase chain reaction after cellular transfection. RESULTS: We demonstrate that oncogenic mutant p53 isoforms are able to inhibit SESN1 expression and consequently the amount of SESN1/AMPK complex, resulting in the downregulation of the AMPK/PGC-1α/UCP2 axis and mitochondrial O2-· production. We also show a correlation between the decrease of reduced thiols with a poorer clinical outcome of CLL patients bearing mutant TP53 gene. The restoration of the mitochondrial uncoupling protein 2 (UCP2) expression, as well as the addition of the radical scavenger N-acetyl-L-cysteine, reversed the oncogenic effects of mutant p53 as cellular hyper-proliferation, antiapoptotic effect, and resistance to drugs. CONCLUSIONS: The inhibition of the SESN1/AMPK/PGC-1α/UCP2 axis contributes to the pro-oxidant and oncogenic effects of mutant p53, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing mutant TP53 gene.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Acetilcisteína/farmacología , Depuradores de Radicales Libres/farmacología , Proteínas de Choque Térmico/biosíntesis , Neoplasias/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína Desacopladora 2/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Proteínas de Choque Térmico/metabolismo , Humanos , Células MCF-7 , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Neoplasias/patología , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo
5.
Biomolecules ; 12(2)2022 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-35204804

RESUMEN

The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Neoplasias Pancreáticas/metabolismo , Proteómica , Secretoma , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Neoplasias Pancreáticas
6.
Cells ; 10(11)2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34831372

RESUMEN

The wild-type protein p53 plays a key role in preventing the formation of neoplasms by controlling cell growth. However, in more than a half of all cancers, the TP53 gene has missense mutations that appear during tumorigenesis. In most cases, the mutated gene encodes a full-length protein with the substitution of a single amino acid, resulting in structural and functional changes and acquiring an oncogenic role. This dual role of the wild-type protein and the mutated isoforms is also evident in the regulation of the redox state of the cell, with antioxidant and prooxidant functions, respectively. In this review, we introduce a new concept of the p53 protein by discussing its sensitivity to the cellular redox state. In particular, we focus on the discussion of structural and functional changes following post-translational modifications of redox-sensitive cysteine residues, which are also responsible for interacting with zinc ions for proper structural folding. We will also discuss therapeutic opportunities using small molecules targeting cysteines capable of modifying the structure and function of the p53 mutant isoforms in view of possible anticancer therapies for patients possessing the mutation in the TP53 gene.


Asunto(s)
Cisteína/metabolismo , Proteínas Mutantes/química , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Animales , Humanos , Proteínas Mutantes/metabolismo , Oxidación-Reducción , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Relación Estructura-Actividad
7.
Biomolecules ; 10(3)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111081

RESUMEN

The TP53 tumor suppressor gene is the most frequently altered gene in tumors and an increasing number of studies highlight that mutant p53 proteins can acquire oncogenic properties, referred to as gain-of-function (GOF). Reactive oxygen species (ROS) play critical roles as intracellular messengers, regulating numerous signaling pathways linked to metabolism and cell growth. Tumor cells frequently display higher ROS levels compared to healthy cells as a result of their increased metabolism as well as serving as an oncogenic agent because of its damaging and mutational properties. Several studies reported that in contrast with the wild type protein, mutant p53 isoforms fail to exert antioxidant activities and rather increase intracellular ROS, driving a pro-tumorigenic survival. These pro-oxidant oncogenic abilities of GOF mutant p53 include signaling and metabolic rewiring, as well as the modulation of critical ROS-related transcription factors and antioxidant systems, which lead ROS unbalance linked to tumor progression. The studies summarized here highlight that GOF mutant p53 isoforms might constitute major targets for selective therapeutic intervention against several types of tumors and that ROS enhancement driven by mutant p53 might represent an "Achilles heel" of cancer cells, suggesting pro-oxidant drugs as a therapeutic approach for cancer patients bearing the mutant TP53 gene.


Asunto(s)
Mutación con Ganancia de Función , Neoplasias/genética , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/genética , Animales , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
8.
Biomolecules ; 10(6)2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32526853

RESUMEN

The cancer secretome is a rich repository of useful information for both cancer biology and clinical oncology. A better understanding of cancer secretome is particularly relevant for pancreatic ductal adenocarcinoma (PDAC), whose extremely high mortality rate is mainly due to early metastasis, resistance to conventional treatments, lack of recognizable symptoms, and assays for early detection. TP53 gene is a master transcriptional regulator controlling several key cellular pathways and it is mutated in ~75% of PDACs. We report the functional effect of the hot-spot p53 mutant isoforms R175H and R273H on cancer cell secretome, showing their influence on proliferation, chemoresistance, apoptosis, and autophagy, as well as cell migration and epithelial-mesenchymal transition. We compared the secretome of p53-null AsPC-1 PDAC cells after ectopic over-expression of R175H-mutp53 or R273H-mutp53 to identify the differentially secreted proteins by mutant p53. By using high-resolution SWATH-MS technology, we found a great number of differentially secreted proteins by the two p53 mutants, 15 of which are common to both mutants. Most of these secreted proteins are reported to promote cancer progression and epithelial-mesenchymal transition and might constitute a biomarker secreted signature that is driven by the hot-spot p53 mutants in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis , Carcinoma Ductal Pancreático/patología , Movimiento Celular , Proliferación Celular , Transición Epitelial-Mesenquimal , Humanos , Mutación , Neoplasias Pancreáticas/patología , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
9.
Biol Rev Camb Philos Soc ; 94(4): 1530-1546, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30972955

RESUMEN

Tumour repopulation is recognized as a crucial event in tumour relapse where therapy-sensitive dying cancer cells influence the tumour microenvironment to sustain therapy-resistant cancer cell growth. Recent studies highlight the role of the oncometabolites succinate, fumarate, and 2-hydroxyglutarate in the aggressiveness of cancer cells and in the worsening of the patient's clinical outcome. These oncometabolites can be produced and secreted by cancer and/or surrounding cells, modifying the tumour microenvironment and sustaining an invasive neoplastic phenotype. In this review, we report recent findings concerning the role in cancer development of succinate, fumarate, and 2-hydroxyglutarate and the regulation of their related enzymes succinate dehydrogenase, fumarate hydratase, and isocitrate dehydrogenase. We propose that oncometabolites are crucially involved in tumour repopulation. The study of the mechanisms underlying the relationship between oncometabolites and tumour repopulation is fundamental for identifying efficient anti-cancer therapeutic strategies and novel serum biomarkers in order to overcome cancer relapse.


Asunto(s)
Fumarato Hidratasa/metabolismo , Isocitrato Deshidrogenasa/metabolismo , Neoplasias/patología , Succinato Deshidrogenasa/metabolismo , Animales , Humanos , Neoplasias/enzimología , Recurrencia , Microambiente Tumoral
10.
Biochim Biophys Acta Mol Cell Res ; 1865(12): 1914-1923, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30296496

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and devastating human malignancies. In about 70% of PDACs the tumor suppressor gene TP53 is mutated generally resulting in conformational changes of mutant p53 (mutp53) proteins, which acquire oncogenic functions triggering aggressiveness of cancers and alteration of energetic metabolism. Here, we demonstrate that mutant p53 prevents the nuclear translocation of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) stabilizing its cytoplasmic localization, thus supporting glycolysis of cancer cells and inhibiting cell death mechanisms mediated by nuclear GAPDH. We further show that the prevention of nuclear localization of GAPDH is mediated by both stimulation of AKT and repression of AMPK signaling, and is associated with the formation of the SIRT1:GAPDH complex. By using siRNA-GAPDH or an inhibitor of the enzyme, we functionally demonstrate that the maintenance of GAPDH in the cytosol has a critical impact on the anti-apoptotic and anti-autophagic effects driven by mutp53. Furthermore, the blockage of its mutp53-dependent cytoplasmic stabilization is able to restore the sensitivity of PDAC cells to the treatment with gemcitabine. Finally, our data suggest that mutp53-dependent enhanced glycolysis permits cancer cells to acquire sensitivity to anti-glycolytic drugs, such as 2-deoxyglucose, suggesting a potential personalized therapeutic approach in human cancers carrying mutant TP53 gene.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Núcleo Celular/metabolismo , Desoxiglucosa/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Neoplasias Pancreáticas/genética , Proteína p53 Supresora de Tumor/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Citosol/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Glucólisis/efectos de los fármacos , Humanos , Mutación , Neoplasias Pancreáticas/metabolismo , Proteínas Quinasas/metabolismo , Transporte de Proteínas , Transducción de Señal/efectos de los fármacos , Sirtuina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Gemcitabina
11.
J Inorg Biochem ; 173: 105-112, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28511060

RESUMEN

Cisplatin (CDDP) can form interprotein cross-links, leading to the formation of platinated oligomers. A dimer, a trimer and higher oligomers of bovine pancreatic ribonuclease (RNase A) obtained upon reaction with CDDP in 1:10 protein to metal ratio at 37°C have been previously characterized. Here, we verify the ability of carboplatin and oxaliplatin to induce RNase A oligomerization under the same experimental conditions. The amount of formed RNase A oligomers was compared with that obtained in the reaction of the protein with CDDP. Among the three anticancer agents, CDDP is the most reactive and the most effective in inhibiting the ribonucleolytic activity of the protein. Oxaliplatin is the least potent oligomerization agent. Biophysical characterizations of structure and stability of platinated dimers formed in the presence of carboplatin and oxaliplatin suggest that they have a similar thermal stability and are more prone to dissociation than the corresponding dimer obtained with CDDP. Oligomers obtained in the presence of carboplatin are the most active. X-ray structures of the monomeric adducts that RNase A forms with the three drugs provide a rational basis to explain the different effects of the three anticancer agents on enzymatic activity and protein aggregation. Although platinated oligomers of RNase A formed upon reaction with CDDP, carboplatin and oxaliplatin retain a residual ribonuclease activity, they do not show cytotoxic action, suggesting that protein aggregation processes induced by Pt-based drugs can represent a collateral drawback, which affects the functional state of protein targets and reduces the efficacy of Pt-based drug treatment.


Asunto(s)
Antineoplásicos/farmacología , Carboplatino/farmacología , Cisplatino/farmacología , Compuestos Organoplatinos/farmacología , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo , Animales , Antineoplásicos/química , Carboplatino/química , Bovinos , Cisplatino/química , Compuestos Organoplatinos/química , Oxaliplatino , Unión Proteica , Multimerización de Proteína/efectos de los fármacos
12.
Free Radic Biol Med ; 113: 176-189, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28962872

RESUMEN

Several studies indicate that mitochondrial uncoupling protein 2 (UCP2) plays a pivotal role in cancer development by decreasing reactive oxygen species (ROS) produced by mitochondrial metabolism and by sustaining chemoresistance to a plethora of anticancer drugs. Here, we demonstrate that inhibition of UCP2 triggers Akt/mTOR pathway in a ROS-dependent mechanism in pancreatic adenocarcinoma cells. This event reduces the antiproliferative outcome of UCP2 inhibition by genipin, creating the conditions for the synergistic counteraction of cancer cell growth with the mTOR inhibitor everolimus. Inhibition of pancreatic adenocarcinoma cell growth and induction of apoptosis by genipin and everolimus treatment are functionally related to nuclear translocation of the cytosolic glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The synthetic compound (S)-benzyl-2-amino-2-(S)-3-bromo-4,5-dihydroisoxazol-5-yl-acetate (AXP3009), which binds GAPDH at its redox-sensitive Cys152, restores cell viability affected by the combined treatment with genipin and everolimus, suggesting a role for ROS production in the nuclear translocation of GAPDH. Caspase-mediated apoptosis by genipin and everolimus is further potentiated by the autophagy inhibitor 3-methyladenine revealing a protective role for Beclin1-mediated autophagy induced by the treatment. Mice xenograft of pancreatic adenocarcinoma further confirmed the antiproliferative outcome of drug combination without toxic effects for animals. Tumor masses from mice injected with UCP2 and mTOR inhibitors revealed a strong reduction in tumor volume and number of mitosis associated with a marked GAPDH nuclear positivity. Altogether, these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation and support the combined inhibition of UCP2 and of Akt/mTOR pathway as a novel therapeutic strategy in the treatment of pancreatic adenocarcinoma.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Everolimus/farmacología , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Iridoides/farmacología , Neoplasias Pancreáticas/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Proteína Desacopladora 2/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/enzimología , Carcinoma Ductal Pancreático/fisiopatología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Everolimus/uso terapéutico , Femenino , Humanos , Iridoides/uso terapéutico , Masculino , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/fisiopatología , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteína Desacopladora 2/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Cancer Lett ; 376(2): 303-9, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27045472

RESUMEN

An ever-increasing number of studies highlight the role of mutant p53 proteins in the alteration of cancer cell secretome and in the modification of tumour microenvironment, sustaining an invasive phenotype of cancer cell. The knowledge of the molecular mechanisms underlying the interplay between mutant p53 proteins and the microenvironment is becoming fundamental for the identification of both efficient anticancer therapeutic strategies and novel serum biomarkers. In this review, we summarize the novel findings concerning the regulation of secreted molecules by cancer cells bearing mutant TP53 gene. In particular, we highlight data from available literature, suggesting that mutant p53 proteins are able to (i) alter the secretion of enzymes involved in the modulation of extracellular matrix components; (ii) alter the secretion of inflammatory cytokines; (iii) increase the extracellular acidification; and (iv) regulate the crosstalk between cancer and stromal cells.


Asunto(s)
Movimiento Celular , Mutación , Neoplasias/metabolismo , Microambiente Tumoral , Proteína p53 Supresora de Tumor/metabolismo , Animales , Comunicación Celular , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Concentración de Iones de Hidrógeno , Mediadores de Inflamación/metabolismo , Ácido Láctico/metabolismo , Invasividad Neoplásica , Neoplasias/genética , Neoplasias/patología , Fenotipo , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
14.
Free Radic Biol Med ; 101: 305-316, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27989750

RESUMEN

Several evidence indicate that metabolic alterations play a pivotal role in cancer development. Here, we report that the mitochondrial uncoupling protein 2 (UCP2) sustains the metabolic shift from mitochondrial oxidative phosphorylation (mtOXPHOS) to glycolysis in pancreas cancer cells. Indeed, we show that UCP2 sensitizes pancreas cancer cells to the treatment with the glycolytic inhibitor 2-deoxy-D-glucose. Through a bidimensional electrophoresis analysis, we identify 19 protein species differentially expressed after treatment with the UCP2 inhibitor genipin and, by bioinformatic analyses, we show that these proteins are mainly involved in metabolic processes. In particular, we demonstrate that the antioxidant UCP2 induces the expression of hnRNPA2/B1, which is involved in the regulation of both GLUT1 and PKM2 mRNAs, and of lactate dehydrogenase (LDH) increasing the secretion of L-lactic acid. We further demonstrate that the radical scavenger N-acetyl-L-cysteine reverts hnRNPA2/B1 and PKM2 inhibition by genipin indicating a role for reactive oxygen species in the metabolic reprogramming of cancer cells mediated by UCP2. We also observe an UCP2-dependent decrease in mtOXPHOS complex I (NADH dehydrogenase), complex IV (cytochrome c oxidase), complex V (ATPase) and in mitochondrial oxygen consumption, suggesting a role for UCP2 in the counteraction of pancreatic cancer cellular respiration. All these results reveal novel mechanisms through which UCP2 promotes cancer cell proliferation with the concomitant metabolic shift from mtOXPHOS to the glycolytic pathway.


Asunto(s)
Proteínas Portadoras/genética , Desoxiglucosa/farmacología , Regulación Neoplásica de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Células Secretoras de Insulina/efectos de los fármacos , Proteínas de la Membrana/genética , Hormonas Tiroideas/genética , Proteína Desacopladora 2/genética , Acetilcisteína/farmacología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Perfilación de la Expresión Génica , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Iridoides/farmacología , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Hormonas Tiroideas/metabolismo , Proteína Desacopladora 2/antagonistas & inhibidores , Proteína Desacopladora 2/metabolismo , Proteínas de Unión a Hormona Tiroide
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA