Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(49): e2212730119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459647

RESUMEN

In BaNiS2, a Dirac nodal line band structure exists within a two-dimensional Ni square lattice system, in which significant electronic correlation effects are anticipated. Using scanning tunneling microscopy (STM), we discover signs of correlated-electron behavior, namely electronic nematicity appearing as a pair of C2-symmetry striped patterns in the local density-of-states at ∼60 meV above the Fermi energy. In observations of quasiparticle interference, as well as identifying scattering between Dirac cones, we find that the striped patterns in real space stem from a lifting of degeneracy among electron pockets at the Brillouin zone boundary. We infer a momentum-dependent energy shift with d-form factor, which we model numerically within a density wave (DW) equation framework that considers spin-fluctuation-driven nematicity. This suggests an unusual mechanism driving the nematic instability, stemming from only a small perturbation to the Fermi surface, in a system with very low density of states at the Fermi energy. The Dirac points lie at nodes of the d-form factor and are almost unaffected by it. These results highlight BaNiS2 as a unique material in which Dirac electrons and symmetry-breaking electronic correlations coexist.


Asunto(s)
Electrónica , Electrones , Microscopía de Túnel de Rastreo , Movimiento (Física) , Células Fotorreceptoras Retinianas Conos
2.
Nano Lett ; 15(10): 6896-900, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26393876

RESUMEN

Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)/Bi2Se3 and Fe/PTCDA/Bi2Se3 heterointerfaces are investigated using scanning tunneling microscopy and spectroscopy. The close-packed self-assembled PTCDA monolayer possesses big molecular band gap and weak molecule-substrate interactions, which leaves the Bi2Se3 topological surface state intact under PTCDA. Formation of Fe-PTCDA hybrids removes interactions between the Fe dopant and the Bi2Se3 surface, such as doping effects and Coulomb scattering. Our findings reveal the functionality of PTCDA to prevent dopant disturbances in the TSS and provide an effective alternative for interface designs of realistic TI devices.

3.
ACS Nano ; 10(10): 9361-9369, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27660852

RESUMEN

Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.

4.
Nat Commun ; 5: 4066, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24898943

RESUMEN

Surfaces of semiconductors with strong spin-orbit coupling are of great interest for use in spintronic devices exploiting the Rashba effect. BiTeI features large Rashba-type spin splitting in both valence and conduction bands. Either can be shifted towards the Fermi level by surface band bending induced by the two possible polar terminations, making Rashba spin-split electron or hole bands electronically accessible. Here we demonstrate the first real-space microscopic identification of each termination with a multi-technique experimental approach. Using spatially resolved tunnelling spectroscopy across the lateral boundary between the two terminations, a previously speculated on p-n junction-like discontinuity in electronic structure at the lateral boundary is confirmed experimentally. These findings realize an important step towards the exploitation of the unique behaviour of the Rashba semiconductor BiTeI for new device concepts in spintronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA