Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cardiovasc Diabetol ; 23(1): 50, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302978

RESUMEN

BACKGROUND: Diabetes mellitus is a chronic disease which is detrimental to cardiovascular health, often leading to secondary microvascular complications, with huge global health implications. Therapeutic interventions that can be applied to multiple vascular beds are urgently needed. Diabetic retinopathy (DR) and diabetic kidney disease (DKD) are characterised by early microvascular permeability changes which, if left untreated, lead to visual impairment and renal failure, respectively. The heparan sulphate cleaving enzyme, heparanase, has previously been shown to contribute to diabetic microvascular complications, but the common underlying mechanism which results in microvascular dysfunction in conditions such as DR and DKD has not been determined. METHODS: In this study, two mouse models of heparan sulphate depletion (enzymatic removal and genetic ablation by endothelial specific Exotosin-1 knock down) were utilized to investigate the impact of endothelial cell surface (i.e., endothelial glycocalyx) heparan sulphate loss on microvascular barrier function. Endothelial glycocalyx changes were measured using fluorescence microscopy or transmission electron microscopy. To measure the impact on barrier function, we used sodium fluorescein angiography in the eye and a glomerular albumin permeability assay in the kidney. A type 2 diabetic (T2D, db/db) mouse model was used to determine the therapeutic potential of preventing heparan sulphate damage using treatment with a novel heparanase inhibitor, OVZ/HS-1638. Endothelial glycocalyx changes were measured as above, and microvascular barrier function assessed by albumin extravasation in the eye and a glomerular permeability assay in the kidney. RESULTS: In both models of heparan sulphate depletion, endothelial glycocalyx depth was reduced and retinal solute flux and glomerular albumin permeability was increased. T2D mice treated with OVZ/HS-1638 had improved endothelial glycocalyx measurements compared to vehicle treated T2D mice and were simultaneously protected from microvascular permeability changes associated with DR and DKD. CONCLUSION: We demonstrate that endothelial glycocalyx heparan sulphate plays a common mechanistic role in microvascular barrier function in the eye and kidney. Protecting the endothelial glycocalyx damage in diabetes, using the novel heparanase inhibitor OVZ/HS-1638, effectively prevents microvascular permeability changes associated with DR and DKD, demonstrating a novel systemic approach to address diabetic microvascular complications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Nefropatías Diabéticas , Glucuronidasa , Animales , Ratones , Glicocálix/metabolismo , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/prevención & control , Heparitina Sulfato/metabolismo , Heparitina Sulfato/farmacología , Albúminas/farmacología , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/prevención & control , Angiopatías Diabéticas/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(27): 15862-15873, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32561647

RESUMEN

Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions. We found that Neuropeptide Y (NPY) was significantly down-regulated in insulin-resistant vs. insulin-sensitive mouse podocytes and in human glomeruli of patients with early and late-stage diabetic nephropathy, as well as other nondiabetic glomerular diseases. This contrasts with the increased plasma and urinary levels of NPY that are observed in such conditions. Studying NPY-knockout mice, we found that NPY deficiency in vivo surprisingly reduced the level of albuminuria and podocyte injury in models of both diabetic and nondiabetic kidney disease. In vitro, podocyte NPY signaling occurred via the NPY2 receptor (NPY2R), stimulating PI3K, MAPK, and NFAT activation. Additional unbiased proteomic analysis revealed that glomerular NPY-NPY2R signaling predicted nephrotoxicity, modulated RNA processing, and inhibited cell migration. Furthermore, pharmacologically inhibiting the NPY2R in vivo significantly reduced albuminuria in adriamycin-treated glomerulosclerotic mice. Our findings suggest a pathogenic role of excessive NPY-NPY2R signaling in the glomerulus and that inhibiting NPY-NPY2R signaling in albuminuric kidney disease has therapeutic potential.


Asunto(s)
Albuminuria/metabolismo , Enfermedades Renales/metabolismo , Neuropéptido Y/metabolismo , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal/fisiología , Animales , Arginina/análogos & derivados , Arginina/farmacología , Benzazepinas/farmacología , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Doxorrubicina/farmacología , Humanos , Insulina/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neuropéptido Y/farmacología , Neuropéptido Y/orina , Podocitos/metabolismo , Proteómica , Receptores de Neuropéptido Y/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
3.
J Am Soc Nephrol ; 33(6): 1120-1136, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35292439

RESUMEN

BACKGROUND: Glomerular endothelial cell (GEnC) fenestrations are recognized as an essential component of the glomerular filtration barrier, yet little is known about how they are regulated and their role in disease. METHODS: We comprehensively characterized GEnC fenestral and functional renal filtration changes including measurement of glomerular Kf and GFR in diabetic mice (BTBR ob-/ob- ). We also examined and compared human samples. We evaluated Eps homology domain protein-3 (EHD3) and its association with GEnC fenestrations in diabetes in disease samples and further explored its role as a potential regulator of fenestrations in an in vitro model of fenestration formation using b.End5 cells. RESULTS: Loss of GEnC fenestration density was associated with decreased filtration function in diabetic nephropathy. We identified increased diaphragmed fenestrations in diabetes, which are posited to increase resistance to filtration and further contribute to decreased GFR. We identified decreased glomerular EHD3 expression in diabetes, which was significantly correlated with decreased fenestration density. Reduced fenestrations in EHD3 knockdown b.End5 cells in vitro further suggested a mechanistic role for EHD3 in fenestration formation. CONCLUSIONS: This study demonstrates the critical role of GEnC fenestrations in renal filtration function and suggests EHD3 may be a key regulator, loss of which may contribute to declining glomerular filtration function through aberrant GEnC fenestration regulation. This points to EHD3 as a novel therapeutic target to restore filtration function in disease.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Fenómenos Fisiológicos del Sistema Urinario , Animales , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Células Endoteliales/metabolismo , Glomérulos Renales/metabolismo , Ratones
4.
Int J Cancer ; 148(12): 3032-3040, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33521927

RESUMEN

Proteasome inhibitor (PI) therapy has improved the survival of multiple myeloma (MM) patients. However, inevitably, primary or acquired resistance to PIs leads to disease progression; resistance mechanisms are unclear. Obesity is a risk factor for MM mortality. Oxidized LDL (OxLDL), a central mediator of atherosclerosis that is elevated in metabolic syndrome (co-occurrence of obesity, insulin resistance, dyslipidemia and hypertension), has been linked to an increased risk of solid cancers and shown to stimulate pro-oncogenic/survival signaling. We hypothesized that OxLDL is a mediator of chemoresistance and evaluated its effects on MM cell killing by PIs. OxLDL potently suppressed the ability of the boronic acid-based PIs bortezomib (BTZ) and ixazomib, but not the epoxyketone-based PI carfilzomib, to kill human MM cell lines and primary cells. OxLDL suppressed BTZ-induced inhibition of proteasome activity and induction of pro-apoptotic signaling. These cytoprotective effects were abrogated when lipid hydroperoxides (LOOHs) associated with OxLDL were enzymatically reduced. We also demonstrated the presence of OxLDL in the MM bone marrow microenvironment as well as numerous granulocytes and monocytes capable of cell-mediated LDL oxidation through myeloperoxidase. Our findings suggest that OxLDL may be a potent mediator of boronic acid-based PI resistance, particularly for MM patients with metabolic syndrome, given their elevated systemic levels of OxLDL. LDL cholesterol-lowering therapy to reduce circulating OxLDL, and pharmacologic targeting of LOOH levels or resistance pathways induced by the modified lipoprotein, could deepen the response to these important agents and offer clinical benefit to MM patients with metabolic syndrome.


Asunto(s)
Resistencia a Antineoplásicos , Lipoproteínas LDL/metabolismo , Mieloma Múltiple/metabolismo , Inhibidores de Proteasoma/farmacología , Compuestos de Boro/farmacología , Bortezomib/farmacología , Línea Celular Tumoral , Glicina/análogos & derivados , Glicina/farmacología , Granulocitos/metabolismo , Humanos , Peróxidos Lipídicos/metabolismo , Monocitos/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Oligopéptidos/farmacología , Inhibidores de Proteasoma/uso terapéutico
5.
Am J Pathol ; 190(4): 742-751, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32035881

RESUMEN

The endothelial glycocalyx is a vital regulator of vascular permeability. Damage to this delicate layer can result in increased protein and water transit. The clinical importance of albuminuria as a predictor of kidney disease progression and vascular disease has driven research in this area. This review outlines how research to date has attempted to measure the contribution of the endothelial glycocalyx to vessel wall permeability. We discuss the evidence for the role of the endothelial glycocalyx in regulating permeability in discrete areas of the vasculature and highlight the inherent limitations of the data that have been produced to date. In particular, this review emphasizes the difficulties in interpreting urinary albumin levels in early disease models. In addition, the research that supports the view that glycocalyx damage is a key pathologic step in a diverse array of clinical conditions, including diabetic complications, sepsis, preeclampsia, and atherosclerosis, is summarized. Finally, novel methods are discussed, including an ex vivo glomerular permeability assay that enhances the understanding of permeability changes in disease.


Asunto(s)
Permeabilidad Capilar , Endotelio Vascular/metabolismo , Glicocálix/fisiología , Enfermedades Vasculares/patología , Animales , Humanos , Enfermedades Vasculares/metabolismo
6.
Kidney Int ; 97(3): 450-452, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32087885

RESUMEN

Patients with end-stage renal disease have a high risk of dying from cardiovascular disease that cannot be explained solely by traditional cardiovascular disease risk factors. Hesse et al. suggest that dysfunctional high-density lipoprotein cholesterol generated in patients with end-stage renal disease causes endothelial glycocalyx degradation. Glycocalyx degradation may represent one of the earliest insults leading to atheroma formation, and so this work suggests a novel link between renal failure and cardiovascular disease.


Asunto(s)
Glicocálix , Insuficiencia Renal Crónica , Arginina/análogos & derivados , Humanos , Lipoproteínas HDL
7.
Kidney Int ; 97(5): 951-965, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32037077

RESUMEN

The endothelial glycocalyx is a key component of the glomerular filtration barrier. We have shown that matrix metalloproteinase (MMP)-mediated syndecan 4 shedding is a mechanism of glomerular endothelial glycocalyx damage in vitro, resulting in increased albumin permeability. Here we sought to determine whether this mechanism is important in early diabetic kidney disease, by studying streptozotocin-induced type 1 diabetes in DBA2/J mice. Diabetic mice were albuminuric, had increased glomerular albumin permeability and endothelial glycocalyx damage. Syndecan 4 mRNA expression was found to be upregulated in isolated glomeruli and in flow cytometry-sorted glomerular endothelial cells. In contrast, glomerular endothelial luminal surface syndecan 4 and Marasmium oreades agglutinin lectin labelling measurements were reduced in the diabetic mice. Similarly, syndecan 4 protein expression was significantly decreased in isolated glomeruli but increased in plasma and urine, suggesting syndecan 4 shedding. Mmp-2, 9 and 14 mRNA expression were upregulated in isolated glomeruli, suggesting a possible mechanism of glycocalyx damage and albuminuria. We therefore characterised in detail the activity of MMP-2 and 9 and found significant increases in kidney cortex, plasma and urine. Treatment with MMP-2/9 inhibitor I for 21 days, started six weeks after diabetes induction, restored endothelial glycocalyx depth and coverage and attenuated diabetes-induced albuminuria and reduced glomerular albumin permeability. MMP inhibitor treatment significantly attenuated glomerular endothelial and plasma syndecan 4 shedding and inhibited plasma MMP activity. Thus, our studies confirm the importance of MMPs in endothelial glycocalyx damage and albuminuria in early diabetes and demonstrate that this pathway is amenable to therapeutic intervention. Hence, treatments targeted at glycocalyx protection by MMP inhibition may be of benefit in diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Células Endoteliales , Barrera de Filtración Glomerular , Glicocálix , Metaloproteinasas de la Matriz , Ratones , Sindecano-4/genética
8.
Kidney Int ; 95(1): 94-107, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30389198

RESUMEN

Aldosterone contributes to end-organ damage in heart failure and chronic kidney disease. Mineralocorticoid-receptor inhibitors limit activation of the receptor by aldosterone and slow disease progression, but side effects, including hyperkalemia, limit their clinical use. Damage to the endothelial glycocalyx (a luminal biopolymer layer) has been implicated in the pathogenesis of endothelial dysfunction and albuminuria, but to date no one has investigated whether the glomerular endothelial glycocalyx is affected by aldosterone. In vitro, human glomerular endothelial cells exposed to 0.1 nM aldosterone and 145 mMol NaCl exhibited reduced cell surface glycocalyx components (heparan sulfate and syndecan-4) and disrupted shear sensing consistent with damage of the glycocalyx. In vivo, administration of 0.6 µg/g/d of aldosterone (subcutaneous minipump) and 1% NaCl drinking water increased glomerular matrix metalloproteinase 2 activity, reduced syndecan 4 expression, and caused albuminuria. Intravital multiphoton imaging confirmed that aldosterone caused damage of the glomerular endothelial glycocalyx and increased the glomerular sieving coefficient for albumin. Targeting matrix metalloproteinases 2 and 9 with a specific gelatinase inhibitor preserved the glycocalyx, blocked the rise in glomerular sieving coefficient, and prevented albuminuria. Together these data suggest that preservation of the glomerular endothelial glycocalyx may represent a novel strategy for limiting the pathological effects of aldosterone.


Asunto(s)
Albuminuria/patología , Aldosterona/metabolismo , Glicocálix/patología , Insuficiencia Renal Crónica/patología , Albuminuria/orina , Animales , Línea Celular , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Glicocálix/efectos de los fármacos , Heparitina Sulfato/metabolismo , Humanos , Glomérulos Renales/citología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/patología , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Insuficiencia Renal Crónica/orina , Cloruro de Sodio/farmacología , Sindecano-4/metabolismo
9.
Kidney Int ; 93(5): 1086-1097, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29433915

RESUMEN

Increased urinary albumin excretion is a key feature of glomerular disease but has limitations as a measure of glomerular permeability. Here we describe a novel assay to measure the apparent albumin permeability of single capillaries in glomeruli, isolated from perfused kidneys cleared of red blood cells. The rate of decline of the albumin concentration within the capillary lumen was quantified using confocal microscopy and used to calculate apparent permeability. The assay was extensively validated and provided robust, reproducible estimates of glomerular albumin permeability. These values were comparable with previous in vivo data, showing this assay could be applied to human as well as rodent glomeruli. To confirm this, we showed that targeted endothelial glycocalyx disruption resulted in increased glomerular albumin permeability in mice. Furthermore, incubation with plasma from patients with post-transplant recurrence of nephrotic syndrome increased albumin permeability in rat glomeruli compared to remission plasma. Finally, in glomeruli isolated from rats with early diabetes there was a significant increase in albumin permeability and loss of endothelial glycocalyx, both of which were ameliorated by angiopoietin-1. Thus, a glomerular permeability assay, producing physiologically relevant values with sufficient sensitivity to measure changes in glomerular permeability and independent of tubular function, was developed and validated. This assay significantly advances the ability to study biology and disease in rodent and human glomeruli.


Asunto(s)
Bioensayo/métodos , Capilares/metabolismo , Permeabilidad Capilar , Glomérulos Renales/irrigación sanguínea , Albúmina Sérica/metabolismo , Albuminuria/metabolismo , Albuminuria/fisiopatología , Angiopoyetina 1/farmacología , Animales , Capilares/efectos de los fármacos , Capilares/fisiopatología , Permeabilidad Capilar/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/fisiopatología , Femenino , Glicocálix/metabolismo , Humanos , Técnicas In Vitro , Cinética , Masculino , Ratones Endogámicos C57BL , Microscopía Confocal , Síndrome Nefrótico/sangre , Síndrome Nefrótico/fisiopatología , Ratas Sprague-Dawley , Reproducibilidad de los Resultados
10.
J Nurs Scholarsh ; 50(1): 102-108, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29116683

RESUMEN

BACKGROUND: The gender pay gap in the United States is an ongoing issue, affecting women in nearly all occupations. Jobs traditionally associated with men tend to pay better than traditionally female-dominated jobs, and there is evidence to suggest within-occupation gender pay differences as well. PURPOSE: We compared and contrasted gender wage disparities for registered nurses (RNs), relative to gender wage disparities for another female-dominated occupation, teachers, while controlling for sociodemographic factors. METHODS: Using data in the American Community Survey, we analyzed the largest U.S. random representative sample of self-identified RNs and primary or secondary school teachers from 2000 to 2013 using fixed-effects regression analysis. RESULTS: There is greater disparity between nurse pay by gender than in teacher pay by gender. In addition, the net return in wages for additional education is higher for school teachers (21.7%) than for RNs (4.7%). CONCLUSIONS: Findings support preferential wages for men in nursing, more so than for men in teaching. CLINICAL RELEVANCE: The substantial gender disparities are an indirect measure of the misallocation of resources in effective patient care.


Asunto(s)
Enfermeras y Enfermeros/economía , Salarios y Beneficios/estadística & datos numéricos , Sexismo , Femenino , Humanos , Masculino , Enfermeras y Enfermeros/estadística & datos numéricos , Estados Unidos
11.
J Nurs Scholarsh ; 48(6): 608-615, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27737516

RESUMEN

PURPOSE: No studies quantify the labor market disparities between nurses with and without activity difficulties (physical impairment or disability). We explore disparate treatment of nurses with activity difficulties at three margins of the labor market: the ability to get a job, the relative wage rate offered once a nurse has a job, and the annual hours of work given that wage rate. DESIGN: Key variables from the American Community Survey (ACS) were analyzed, including basic demographic information, wages, hours of work, and employment status of registered nurses from 2006 to 2014. FINDINGS: Although there is relatively little disparity in hourly wages, there is enormous disparity in the disabled's employment and hours of work opportunities, and hence a moderate amount of disparity in annual wages. CONCLUSIONS: This has significant implications for the nursing labor force, particularly as the nursing workforce continues to age and physical limitations or disabilities increase by 15-fold from 25 to 65 years of age. CLINICAL RELEVANCE: Physical or psychological difficulties increase sharply over the course of a nurse's career, and employers must heighten efforts to facilitate an aging workforce and provide appropriate job accommodations for nurses with activity limitations.


Asunto(s)
Personas con Discapacidad/estadística & datos numéricos , Empleo/estadística & datos numéricos , Enfermeras y Enfermeros/economía , Enfermeras y Enfermeros/estadística & datos numéricos , Salarios y Beneficios/estadística & datos numéricos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Encuestas y Cuestionarios , Estados Unidos
13.
FASEB J ; 28(11): 4686-99, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25122554

RESUMEN

The endothelial surface glycocalyx is a hydrated mesh in which proteoglycans are prominent. It is damaged in diseases associated with elevated levels of tumor necrosis factor α (TNF-α). We investigated the mechanism of TNF-α-induced disruption of the glomerular endothelial glycocalyx. We used conditionally immortalized human glomerular endothelial cells (GEnCs), quantitative PCR arrays, Western blotting, immunoprecipitation, immunofluorescence, and dot blots to examine the effects of TNF-α. TNF-α induced syndecan 4 (SDC4) mRNA up-regulation by 2.5-fold, whereas cell surface SDC4 and heparan sulfate (HS) were reduced by 36 and 30%, respectively, and SDC4 and sulfated glycosaminoglycan in the culture medium were increased by 52 and 65%, respectively, indicating TNF-α-induced shedding. Small interfering (siRNA) knockdown of SDC4 (by 52%) caused a corresponding loss of cell surface HS of similar magnitude (38%), and immunoprecipitation demonstrated that SDC4 and HS are shed as intact proteoglycan ectodomains. All of the effects of TNF-α on SDC4 and HS were abrogated by the metalloproteinase (MMP) inhibitor batimastat. Also abrogated was the associated 37% increase in albumin passage across GEnC monolayers. Specific MMP9 knockdown by siRNA similarly blocked TNF-α effects. SDC4 is the predominant HS proteoglycan in the GEnC glycocalyx. TNF-α-induced MMP9-mediated shedding of SDC4 is likely to contribute to the endothelial glycocalyx disruption observed in diabetes and inflammatory states.


Asunto(s)
Glicocálix/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Sindecano-4/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Membrana Celular , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Metaloproteinasa 9 de la Matriz/genética , Proteoglicanos/metabolismo
14.
Wildl Soc Bull ; 38(1): 188-195, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26388657

RESUMEN

The whooping crane (Grus americana), an endangered species, has been counted on its winter grounds in Texas, USA, since 1950 using fixed-wing aircraft. Many shortcomings of the traditional survey technique have been identified, calling into question its efficacy, defensibility, repeatability, and usefulness into the future. To improve and standardize monitoring effort, we began investigating new survey techniques. Here we focus on efficacy of line transect-based distance sampling during aerial surveys. We conducted a preliminary test of distance sampling during winter 2010-2011 while flying the traditional survey, which indicated that detectability within 500 m of transects was 0.558 (SE = 0.031). We then used an experimental decoy survey to evaluate impacts of observer experience, sun position, distance from transect, and group size on detectability. Our results indicated decoy detectability increased with group size and exhibited a quadratic relationship with distance likely due to pontoons on the aircraft. We found that detectability was 2.704 times greater when the sun was overhead and 3.912 times greater when the sun was at the observer's back than when it was in the observer's eyes. We found that an inexperienced observer misclassified non-target objects more often than an experienced observer. During the decoy experiment we used marks on the struts to categorize distances into intervals, but we found that observers misclassified distances 46.7% of the time (95% CI = 37.0-56.6%). Also, we found that detectability of individuals within detected groups was affected by group size and distance from transect. We discuss how these results inform design and implementation of future whooping crane monitoring efforts. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

15.
JCO Oncol Pract ; 20(1): 131-135, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37713649

RESUMEN

PURPOSE: To understand the spectrum and volume of classical hematology (CH) referrals to hematology clinics at a National Cancer Institute (NCI)-designated cancer center (CC) to plan for the delivery of effective and equitable care for this population. METHODS: One referral office at the Academic CC located in Bexar County, TX, handles all adult hematology referrals. From October 1, 2021, to September 30, 2022, all nonmalignant hematology (MH) referrals were triaged daily to define the category of CH problem. Declined referrals (confirmed at triage that no CH problem was evident) are included as part of this analysis. Electronic consultation (opinion rendered without patient seen) at our CC is available and is not part of this analysis. RESULTS: One thousand nine hundred forty-five CH referrals were received in the 12-month period. Seventy-six referrals (3.9%) were declined. During the study period, there were 2,289 medical oncology referrals and 779 referrals for MH. CH referrals therefore comprise 39% of all hematology-oncology referrals and 71% of all hematology referrals at the CC. Anemia and thrombotic disorders were the most common categories of the accepted CH referrals at 487 (26%) and 393 (21%), respectively. Video visits were used for 447 of all CH referrals (23%), and the rest were in person. CONCLUSION: Nearly 40% of all referrals to hematology and medical oncology at our NCI-designated CC are for CH. Effective management of the CH population of patients will allow ideal care for CH problems and also allow cancer-focused care to improve.


Asunto(s)
Hematología , Neoplasias , Adulto , Estados Unidos/epidemiología , Humanos , National Cancer Institute (U.S.) , Derivación y Consulta , Triaje , Oncología Médica , Neoplasias/complicaciones , Neoplasias/epidemiología , Neoplasias/terapia
16.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38530908

RESUMEN

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Asunto(s)
Adiponectina , Diabetes Mellitus Tipo 2 , Glicocálix , Glomérulos Renales , Animales , Glicocálix/metabolismo , Glicocálix/efectos de los fármacos , Adiponectina/metabolismo , Adiponectina/genética , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Glomérulos Renales/efectos de los fármacos , Humanos , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Masculino , Barrera de Filtración Glomerular/metabolismo , Barrera de Filtración Glomerular/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Sindecano-4/metabolismo , Sindecano-4/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
18.
Biomolecules ; 13(6)2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37371584

RESUMEN

The renin angiotensin aldosterone system is a key regulator of blood pressure. Aldosterone is the final effector of this pathway, acting predominantly via mineralocorticoid receptors. Aldosterone facilitates the conservation of sodium and, with it, water and acts as a powerful stimulus for potassium excretion. However, evidence for the pathological impact of excess mineralocorticoid receptor stimulation is increasing. Here, we discussed how in the heart, hyperaldosteronism is associated with fibrosis, cardiac dysfunction, and maladaptive hypertrophy. In the kidney, aldosterone was shown to cause proteinuria and fibrosis and may contribute to the progression of kidney disease. More recently, studies suggested that aldosterone excess damaged endothelial cells. Here, we reviewed how damage to the endothelial glycocalyx may contribute to this process. The endothelial glycocalyx is a heterogenous, negatively charged layer on the luminal surface of cells. Aldosterone exposure alters this layer. The resulting structural changes reduced endothelial reactivity in response to protective shear stress, altered permeability, and increased immune cell trafficking. Finally, we reviewed current therapeutic strategies for limiting endothelial damage and suggested that preventing glycocalyx remodelling in response to aldosterone exposure may provide a novel strategy, free from the serious adverse effect of hyperkalaemia seen in response to mineralocorticoid blockade.


Asunto(s)
Aldosterona , Endotelio Vascular , Humanos , Aldosterona/metabolismo , Endotelio Vascular/metabolismo , Células Endoteliales/metabolismo , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Fibrosis
19.
JCI Insight ; 8(5)2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36749631

RESUMEN

The glomerular endothelial glycocalyx (GEnGlx) forms the first part of the glomerular filtration barrier. Previously, we showed that mineralocorticoid receptor (MR) activation caused GEnGlx damage and albuminuria. In this study, we investigated whether MR antagonism could limit albuminuria in diabetes and studied the site of action. Streptozotocin-induced diabetic Wistar rats developed albuminuria, increased glomerular albumin permeability (Ps'alb), and increased glomerular matrix metalloproteinase (MMP) activity with corresponding GEnGlx loss. MR antagonism prevented albuminuria progression, restored Ps'alb, preserved GEnGlx, and reduced MMP activity. Enzymatic degradation of the GEnGlx negated the benefits of MR antagonism, confirming their dependence on GEnGlx integrity. Exposing human glomerular endothelial cells (GEnC) to diabetic conditions in vitro increased MMPs and caused glycocalyx damage. Amelioration of these effects confirmed a direct effect of MR antagonism on GEnC. To confirm relevance to human disease, we used a potentially novel confocal imaging method to show loss of GEnGlx in renal biopsy specimens from patients with diabetic nephropathy (DN). In addition, patients with DN randomized to receive an MR antagonist had reduced urinary MMP2 activity and albuminuria compared with placebo and baseline levels. Taken together, our work suggests that MR antagonists reduce MMP activity and thereby preserve GEnGlx, resulting in reduced glomerular permeability and albuminuria in diabetes.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ratas , Animales , Humanos , Antagonistas de Receptores de Mineralocorticoides/farmacología , Antagonistas de Receptores de Mineralocorticoides/uso terapéutico , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Albuminuria/tratamiento farmacológico , Células Endoteliales/metabolismo , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/uso terapéutico , Glicocálix/metabolismo , Ratas Wistar , Nefropatías Diabéticas/metabolismo , Diabetes Mellitus/metabolismo
20.
Med ; 4(11): 761-777.e8, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37863058

RESUMEN

BACKGROUND: Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS: Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS: Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS: This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING: This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).


Asunto(s)
Infecciones por Escherichia coli , Síndrome Hemolítico-Urémico , Enfermedades Renales , Podocitos , Escherichia coli Shiga-Toxigénica , Niño , Humanos , Ratones , Animales , Podocitos/metabolismo , Podocitos/patología , Toxina Shiga/genética , Toxina Shiga/metabolismo , Toxina Shiga/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/uso terapéutico , Infecciones por Escherichia coli/complicaciones , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/metabolismo , Síndrome Hemolítico-Urémico/tratamiento farmacológico , Síndrome Hemolítico-Urémico/metabolismo , Síndrome Hemolítico-Urémico/patología , Escherichia coli Shiga-Toxigénica/metabolismo , Activación de Complemento , Enfermedades Renales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA