Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant Cell ; 35(1): 139-161, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377770

RESUMEN

Research into crop yield and resilience has underpinned global food security, evident in yields tripling in the past 5 decades. The challenges that global agriculture now faces are not just to feed 10+ billion people within a generation, but to do so under a harsher, more variable, and less predictable climate, and in many cases with less water, more expensive inputs, and declining soil quality. The challenges of climate change are not simply to breed for a "hotter drier climate," but to enable resilience to floods and droughts and frosts and heat waves, possibly even within a single growing season. How well we prepare for the coming decades of climate variability will depend on our ability to modify current practices, innovate with novel breeding methods, and communicate and work with farming communities to ensure viability and profitability. Here we define how future climates will impact farming systems and growing seasons, thereby identifying the traits and practices needed and including exemplars being implemented and developed. Critically, this review will also consider societal perspectives and public engagement about emerging technologies for climate resilience, with participatory approaches presented as the best approach.


Asunto(s)
Agricultura , Suelo , Fenotipo , Estaciones del Año , Estrés Fisiológico
2.
New Phytol ; 238(1): 33-54, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683439

RESUMEN

Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.


Asunto(s)
Plantas , Suelo , Plantas/metabolismo
3.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36232687

RESUMEN

Salinity tolerance-associated phenotypes of 35 EMS mutagenized wheat lines originating from BARI Gom-25 were compared. Vegetative growth was measured using non-destructive image-based phenotyping. Five different NaCl concentrations (0 to 160 mM) were applied to plants 19 days after planting (DAP 19), and plants were imaged daily until DAP 38. Plant growth, water use, leaf Na+, K+ and Cl- content, and thousand kernel weight (TKW) were measured, and six lines were selected for further analysis. In saline conditions, leaf Na+, K+, and Cl- content variation on a dry weight basis within these six lines were ~9.3, 1.4, and 2.4-fold, respectively. Relative to BARI Gom-25, two (OA6, OA62) lines had greater K+ accumulation, three (OA6, OA10, OA62) had 50-75% lower Na+:K+ ratios, and OA62 had ~30% greater water-use index (WUI). OA23 had ~2.2-fold greater leaf Na+ and maintained TKW relative to BARI Gom-25. Two lines (OA25, OA52) had greater TKW than BARI Gom-25 when grown in 120 mM NaCl but similar Na+:K+, WUI, and biomass accumulation. OA6 had relatively high TKW, high leaf K+, and WUI, and low leaf Na+ and Cl-. Phenotypic variation revealed differing associations between the parameters measured in the lines. Future identification of the genetic basis of these differences, and crossing of lines with phenotypes of interest, is expected to enable the assessment of which combinations of parameters deliver the greatest improvement in salinity tolerance.


Asunto(s)
Tolerancia a la Sal , Triticum , Iones , Hojas de la Planta/genética , Salinidad , Tolerancia a la Sal/genética , Sodio , Cloruro de Sodio/farmacología , Triticum/genética , Agua
4.
New Phytol ; 225(3): 1091-1096, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31006123

RESUMEN

Plant roots must exclude almost all of the Na+ and Cl- in saline soil while taking up water, otherwise these ions would build up to high concentrations in leaves. Plants evaporate c. 50 times more water than they retain, so 98% exclusion would result in shoot NaCl concentrations equal to that of the external medium. Taking up just 2% of the NaCl allows a plant to osmotically adjust the Na+ and Cl- in vacuoles, while organic solutes provide the balancing osmotic pressure in the cytoplasm. We quantify the costs of this exclusion by roots, the regulation of Na+ and Cl- transport through the plant, and the costs of osmotic adjustment with organic solutes in roots.


Asunto(s)
Metabolismo Energético , Ósmosis , Desarrollo de la Planta , Salinidad , Suelo/química , Raíces de Plantas/metabolismo
5.
New Phytol ; 225(3): 1072-1090, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31004496

RESUMEN

Agriculture is expanding into regions that are affected by salinity. This review considers the energetic costs of salinity tolerance in crop plants and provides a framework for a quantitative assessment of costs. Different sources of energy, and modifications of root system architecture that would maximize water vs ion uptake are addressed. Energy requirements for transport of salt (NaCl) to leaf vacuoles for osmotic adjustment could be small if there are no substantial leaks back across plasma membrane and tonoplast in root and leaf. The coupling ratio of the H+ -ATPase also is a critical component. One proposed leak, that of Na+ influx across the plasma membrane through certain aquaporin channels, might be coupled to water flow, thus conserving energy. For the tonoplast, control of two types of cation channels is required for energy efficiency. Transporters controlling the Na+ and Cl- concentrations in mitochondria and chloroplasts are largely unknown and could be a major energy cost. The complexity of the system will require a sophisticated modelling approach to identify critical transporters, apoplastic barriers and root structures. This modelling approach will inform experimentation and allow a quantitative assessment of the energy costs of NaCl tolerance to guide breeding and engineering of molecular components.


Asunto(s)
Productos Agrícolas/fisiología , Metabolismo Energético , Tolerancia a la Sal/fisiología , Transporte Biológico , Respiración de la Célula , Raíces de Plantas/anatomía & histología
6.
Plant Cell Environ ; 43(10): 2428-2442, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32678928

RESUMEN

The phosphorylation state of two serine residues within the C-terminal domain of AtPIP2;1 (S280, S283) regulates its plasma membrane localization in response to salt and osmotic stress. Here, we investigated whether the phosphorylation state of S280 and S283 also influence AtPIP2;1 facilitated water and cation transport. A series of single and double S280 and S283 phosphomimic and phosphonull AtPIP2;1 mutants were tested in heterologous systems. In Xenopus laevis oocytes, phosphomimic mutants AtPIP2;1 S280D, S283D, and S280D/S283D had significantly greater ion conductance for Na+ and K+ , whereas the S280A single phosphonull mutant had greater water permeability. We observed a phosphorylation-dependent inverse relationship between AtPIP2;1 water and ion transport with a 10-fold change in both. The results revealed that phosphorylation of S280 and S283 influences the preferential facilitation of ion or water transport by AtPIP2;1. The results also hint that other regulatory sites play roles that are yet to be elucidated. Expression of the AtPIP2;1 phosphorylation mutants in Saccharomyces cerevisiae confirmed that phosphorylation influences plasma membrane localization, and revealed higher Na+ accumulation for S280A and S283D mutants. Collectively, the results show that phosphorylation in the C-terminal domain of AtPIP2;1 influences its subcellular localization and cation transport capacity.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Canales Iónicos/metabolismo , Animales , Animales Modificados Genéticamente , Acuaporinas/fisiología , Proteínas de Arabidopsis/fisiología , Oocitos , Fosforilación , Agua/metabolismo , Xenopus laevis
7.
Plant Cell Environ ; 43(9): 2158-2171, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32652543

RESUMEN

Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+ ) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.


Asunto(s)
Proteínas de Plantas/genética , Brotes de la Planta/metabolismo , Sodio/metabolismo , Triticum/genética , Triticum/metabolismo , Animales , Femenino , Regulación de la Expresión Génica de las Plantas , Modelos Moleculares , Oocitos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Polimorfismo de Nucleótido Simple , Antiportadores de Potasio-Hidrógeno/química , Antiportadores de Potasio-Hidrógeno/genética , Antiportadores de Potasio-Hidrógeno/metabolismo , Tolerancia a la Sal/genética , Xenopus laevis , Xilema/genética , Xilema/metabolismo
8.
J Exp Bot ; 71(6): 1763-1773, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32109278

RESUMEN

Seeds are the typical dispersal and propagation units of angiosperms and gymnosperms. Water movement into and out of seeds plays a crucial role from the point of fertilization through to imbibition and seed germination. A class of membrane intrinsic proteins called aquaporins (AQPs) assist with the movement of water and other solutes within seeds. These highly diverse and abundant proteins are associated with different processes in the development, longevity, imbibition, and germination of seed. However, there are many AQPs encoded in a plant's genome and it is not yet clear how, when, or which AQPs are involved in critical stages of seed biology. Here we review the literature to examine the evidence for AQP involvement in seeds and analyse Arabidopsis seed-related transcriptomic data to assess which AQPs are likely to be important in seed water relations and explore additional roles for AQPs in seed biology.


Asunto(s)
Acuaporinas , Regulación de la Expresión Génica de las Plantas , Acuaporinas/genética , Acuaporinas/metabolismo , Biología , Germinación , Semillas/genética , Semillas/metabolismo
9.
J Exp Bot ; 71(1): 138-153, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31536111

RESUMEN

In cereal grain, sucrose is converted into storage carbohydrates: mainly starch, fructan, and mixed-linkage (1,3;1,4)-ß-glucan (MLG). Previously, endosperm-specific overexpression of the HvCslF6 gene in hull-less barley was shown to result in high MLG and low starch content in mature grains. Morphological changes included inwardly elongated aleurone cells, irregular cell shapes of peripheral endosperm, and smaller starch granules of starchy endosperm. Here we explored the physiological basis for these defects by investigating how changes in carbohydrate composition of developing grain impact mature grain morphology. Augmented MLG coincided with increased levels of soluble carbohydrates in the cavity and endosperm at the storage phase. Transcript levels of genes relating to cell wall, starch, sucrose, and fructan metabolism were perturbed in all tissues. The cell walls of endosperm transfer cells (ETCs) in transgenic grain were thinner and showed reduced mannan labelling relative to the wild type. At the early storage phase, ruptures of the non-uniformly developed ETCs and disorganization of adjacent endosperm cells were observed. Soluble sugars accumulated in the developing grain cavity, suggesting a disturbance of carbohydrate flow from the cavity towards the endosperm, resulting in a shrunken mature grain phenotype. Our findings demonstrate the importance of regulating carbohydrate partitioning in maintenance of grain cellularization and filling processes.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Grano Comestible/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Proteínas de Plantas/genética , Transporte Biológico , Grano Comestible/genética , Endospermo/genética , Endospermo/crecimiento & desarrollo , Hordeum/crecimiento & desarrollo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
10.
Int J Mol Sci ; 21(19)2020 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992595

RESUMEN

Some plasma membrane intrinsic protein (PIP) aquaporins can facilitate ion transport. Here we report that one of the 12 barley PIPs (PIP1 and PIP2) tested, HvPIP2;8, facilitated cation transport when expressed in Xenopus laevis oocytes. HvPIP2;8-associated ion currents were detected with Na+ and K+, but not Cs+, Rb+, or Li+, and was inhibited by Ba2+, Ca2+, and Cd2+ and to a lesser extent Mg2+, which also interacted with Ca2+. Currents were reduced in the presence of K+, Cs+, Rb+, or Li+ relative to Na+ alone. Five HvPIP1 isoforms co-expressed with HvPIP2;8 inhibited the ion conductance relative to HvPIP2;8 alone but HvPIP1;3 and HvPIP1;4 with HvPIP2;8 maintained the ion conductance at a lower level. HvPIP2;8 water permeability was similar to that of a C-terminal phosphorylation mimic mutant HvPIP2;8 S285D, but HvPIP2;8 S285D showed a negative linear correlation between water permeability and ion conductance that was modified by a kinase inhibitor treatment. HvPIP2;8 transcript abundance increased in barley shoot tissues following salt treatments in a salt-tolerant cultivar Haruna-Nijo, but not in salt-sensitive I743. There is potential for HvPIP2;8 to be involved in barley salt-stress responses, and HvPIP2;8 could facilitate both water and Na+/K+ transport activity, depending on the phosphorylation status.


Asunto(s)
Acuaporinas/metabolismo , Calcio/metabolismo , Hordeum/metabolismo , Transporte Iónico , Oocitos/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/metabolismo , Potasio/metabolismo , Sodio/metabolismo , Animales , Acuaporinas/genética , Cationes/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Femenino , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Técnicas de Placa-Clamp , Fosforilación , Proteínas de Plantas/genética , Brotes de la Planta/genética , ARN Complementario/administración & dosificación , Agua/metabolismo , Xenopus laevis
11.
Ann Bot ; 124(2): 201-208, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31162525

RESUMEN

BACKGROUND: Plant membrane transporters are involved in diverse cellular processes underpinning plant physiology, such as nutrient acquisition, hormone movement, resource allocation, exclusion or sequestration of various solutes from cells and tissues, and environmental and developmental signalling. A comprehensive characterization of transporter function is therefore key to understanding and improving plant performance. SCOPE AND CONCLUSIONS: In this review, we focus on the complexities involved in characterizing transporter function and the impact that this has on current genomic annotations. Specific examples are provided that demonstrate why sequence homology alone cannot be relied upon to annotate and classify transporter function, and to show how even single amino acid residue variations can influence transporter activity and specificity. Misleading nomenclature of transporters is often a source of confusion in transporter characterization, especially for people new to or outside the field. Here, to aid researchers dealing with interpretation of large data sets that include transporter proteins, we provide examples of transporters that have been assigned names that misrepresent their cellular functions. Finally, we discuss the challenges in connecting transporter function at the molecular level with physiological data, and propose a solution through the creation of new databases. Further fundamental in-depth research on specific transport (and other) proteins is still required; without it, significant deficiencies in large-scale data sets and systems biology approaches will persist. Reliable characterization of transporter function requires integration of data at multiple levels, from amino acid residue sequence annotation to more in-depth biochemical, structural and physiological studies.


Asunto(s)
Proteínas de Transporte de Membrana , Secuencia de Aminoácidos , Fenotipo , Fenómenos Fisiológicos de las Plantas , Plantas
12.
Cell Mol Life Sci ; 75(6): 1133-1144, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29177534

RESUMEN

An important trait associated with the salt tolerance of wheat is the exclusion of sodium ions (Na+) from the shoot. We have previously shown that the sodium transporters TmHKT1;5-A and TaHKT1;5-D, from Triticum monoccocum (Tm) and Triticum aestivum (Ta), are encoded by genes underlying the major shoot Na+-exclusion loci Nax1 and Kna1, respectively. Here, using heterologous expression, we show that the affinity (K m) for the Na+ transport of TmHKT1;5-A, at 2.66 mM, is higher than that of TaHKT1;5-D at 7.50 mM. Through 3D structural modelling, we identify residues D471/a gap and D474/G473 that contribute to this property. We identify four additional mutations in amino acid residues that inhibit the transport activity of TmHKT1;5-A, which are predicted to be the result of an occlusion of the pore. We propose that the underlying transport properties of TmHKT1;5-A and TaHKT1;5-D contribute to their unique ability to improve Na+ exclusion in wheat that leads to an improved salinity tolerance in the field.


Asunto(s)
Proteínas de Transporte de Catión/química , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química , Brotes de la Planta/metabolismo , Tolerancia a la Sal/genética , Sodio/metabolismo , Simportadores/química , Triticum/metabolismo , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Sitios de Unión , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Clonación Molecular , Transporte Iónico , Cinética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotes de la Planta/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Simportadores/genética , Simportadores/metabolismo , Termodinámica , Triticum/genética , Xenopus laevis/genética , Xenopus laevis/metabolismo
13.
Plant Physiol ; 170(2): 1014-29, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26662602

RESUMEN

Under saline conditions, higher plants restrict the accumulation of chloride ions (Cl(-)) in the shoot by regulating their transfer from the root symplast into the xylem-associated apoplast. To identify molecular mechanisms underpinning this phenomenon, we undertook a transcriptional screen of salt stressed Arabidopsis (Arabidopsis thaliana) roots. Microarrays, quantitative RT-PCR, and promoter-GUS fusions identified a candidate gene involved in Cl(-) xylem loading from the Nitrate transporter 1/Peptide Transporter family (NPF2.4). This gene was highly expressed in the root stele compared to the cortex, and its expression decreased after exposure to NaCl or abscisic acid. NPF2.4 fused to fluorescent proteins, expressed either transiently or stably, was targeted to the plasma membrane. Electrophysiological analysis of NPF2.4 in Xenopus laevis oocytes suggested that NPF2.4 catalyzed passive Cl(-) efflux out of cells and was much less permeable to NO3(-). Shoot Cl(-) accumulation was decreased following NPF2.4 artificial microRNA knockdown, whereas it was increased by overexpression of NPF2.4. Taken together, these results suggest that NPF2.4 is involved in long-distance transport of Cl(-) in plants, playing a role in the loading and the regulation of Cl(-) loading into the xylem of Arabidopsis roots during salinity stress.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloruros/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Ácido Abscísico/farmacología , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Biología Computacional , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes de Plantas , Estudios de Asociación Genética , Glucuronidasa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Cloruro de Sodio/farmacología , Xenopus laevis , Xilema/efectos de los fármacos , Xilema/metabolismo
14.
Plant Cell Environ ; 40(5): 658-671, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27987209

RESUMEN

Excessive soil salinity diminishes crop yield and quality. In a previous study in tomato, we identified two closely linked genes encoding HKT1-like transporters, HKT1;1 and HKT1;2, as candidate genes for a major quantitative trait locus (kc7.1) related to shoot Na+ /K+ homeostasis - a major salt tolerance trait - using two populations of recombinant inbred lines (RILs). Here, we determine the effectiveness of these genes in conferring improved salt tolerance by using two near-isogenic lines (NILs) that were homozygous for either the Solanum lycopersicum allele (NIL17) or for the Solanum cheesmaniae allele (NIL14) at both HKT1 loci; transgenic lines derived from these NILs in which each HKT1;1 and HKT1;2 had been silenced by stable transformation were also used. Silencing of ScHKT1;2 and SlHKT1;2 altered the leaf Na+ /K+ ratio and caused hypersensitivity to salinity in plants cultivated under transpiring conditions, whereas silencing SlHKT1;1/ScHKT1;1 had a lesser effect. These results indicate that HKT1;2 has the more significant role in Na+ homeostasis and salinity tolerance in tomato.


Asunto(s)
Proteínas de Transporte de Catión/genética , Homeostasis , Proteínas de Plantas/genética , Brotes de la Planta/metabolismo , Potasio/metabolismo , Salinidad , Sodio/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Simportadores/genética , Alelos , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes de Plantas , Sitios Genéticos , Homeostasis/efectos de los fármacos , Homeostasis/genética , Endogamia , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Análisis de Componente Principal , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Cloruro de Sodio/farmacología , Simportadores/metabolismo
15.
Plant Cell Environ ; 40(6): 802-815, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27620834

RESUMEN

The aquaporin AtPIP2;1 is an abundant plasma membrane intrinsic protein in Arabidopsis thaliana that is implicated in stomatal closure, and is highly expressed in plasma membranes of root epidermal cells. When expressed in Xenopus laevis oocytes, AtPIP2;1 increased water permeability and induced a non-selective cation conductance mainly associated with Na+ . A mutation in the water pore, G103W, prevented both the ionic conductance and water permeability of PIP2;1. Co-expression of AtPIP2;1 with AtPIP1;2 increased water permeability but abolished the ionic conductance. AtPIP2;2 (93% identical to AtPIP2;1) similarly increased water permeability but not ionic conductance. The ionic conductance was inhibited by the application of extracellular Ca2+ and Cd2+ , with Ca2+ giving a biphasic dose-response with a prominent IC50 of 0.32 mм comparable with a previous report of Ca2+ sensitivity of a non-selective cation channel (NSCC) in Arabidopsis root protoplasts. Low external pH also inhibited ionic conductance (IC50 pH 6.8). Xenopus oocytes and Saccharomyces cerevisiae expressing AtPIP2;1 accumulated more Na+ than controls. Establishing whether AtPIP2;1 has dual ion and water permeability in planta will be important in understanding the roles of this aquaporin and if AtPIP2;1 is a candidate for a previously reported NSCC responsible for Ca2+ and pH sensitive Na+ entry into roots.


Asunto(s)
Acuaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Sustitución de Aminoácidos , Animales , Acuaporinas/genética , Proteínas de Arabidopsis/genética , Cadmio/farmacología , Calcio/farmacología , Regulación de la Expresión Génica de las Plantas , Glicina/genética , Concentración de Iones de Hidrógeno , Oocitos/efectos de los fármacos , Oocitos/fisiología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Sodio/metabolismo , Triptófano/genética , Agua/metabolismo , Xenopus laevis
16.
Int J Mol Sci ; 18(11)2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29099773

RESUMEN

Aquaporins (AQPs) are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophilamelanogaster DmBIB) were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+) on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2) showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.


Asunto(s)
Acuaporinas/metabolismo , Cationes Bivalentes/metabolismo , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bario/metabolismo , Cadmio/metabolismo , Calcio/metabolismo , Drosophila , Humanos , Transporte Iónico , Magnesio/metabolismo , Xenopus
17.
Plant J ; 80(3): 516-26, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25158883

RESUMEN

Bread wheat (Triticum aestivum L.) has a major salt tolerance locus, Kna1, responsible for the maintenance of a high cytosolic K(+) /Na(+) ratio in the leaves of salt stressed plants. The Kna1 locus encompasses a large DNA fragment, the distal 14% of chromosome 4DL. Limited recombination has been observed at this locus making it difficult to map genetically and identify the causal gene. Here, we decipher the function of TaHKT1;5-D, a candidate gene underlying the Kna1 locus. Transport studies using the heterologous expression systems Saccharomyces cerevisiae and Xenopus laevis oocytes indicated that TaHKT1;5-D is a Na(+) -selective transporter. Transient expression in Arabidopsis thaliana mesophyll protoplasts and in situ polymerase chain reaction indicated that TaHKT1;5-D is localised on the plasma membrane in the wheat root stele. RNA interference-induced silencing decreased the expression of TaHKT1;5-D in transgenic bread wheat lines which led to an increase in the Na(+) concentration in the leaves. This indicates that TaHKT1;5-D retrieves Na(+) from the xylem vessels in the root and has an important role in restricting the transport of Na(+) from the root to the leaves in bread wheat. Thus, TaHKT1;5-D confers the essential salinity tolerance mechanism in bread wheat associated with the Kna1 locus via shoot Na(+) exclusion and is critical in maintaining a high K(+) /Na(+) ratio in the leaves. These findings show there is potential to increase the salinity tolerance of bread wheat by manipulation of HKT1;5 genes.


Asunto(s)
Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Sodio/metabolismo , Simportadores/genética , Triticum/genética , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Proteínas de Transporte de Catión/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Oocitos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Tolerancia a la Sal , Análisis de Secuencia de ADN , Simportadores/metabolismo , Transgenes , Triticum/citología , Triticum/metabolismo , Xenopus laevis , Xilema/metabolismo
18.
BMC Plant Biol ; 15: 236, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26432387

RESUMEN

BACKGROUND: Setaria viridis has emerged as a model species for the larger C4 grasses. Here the cellulose synthase (CesA) superfamily has been defined, with an emphasis on the amounts and distribution of (1,3;1,4)-ß-glucan, a cell wall polysaccharide that is characteristic of the grasses and is of considerable value for human health. METHODS: Orthologous relationship of the CesA and Poales-specific cellulose synthase-like (Csl) genes among Setaria italica (Si), Sorghum bicolor (Sb), Oryza sativa (Os), Brachypodium distachyon (Bradi) and Hordeum vulgare (Hv) were compared using bioinformatics analysis. Transcription profiling of Csl gene families, which are involved in (1,3;1,4)-ß-glucan synthesis, was performed using real-time quantitative PCR (Q-PCR). The amount of (1,3;1,4)-ß-glucan was measured using a modified Megazyme assay. The fine structures of the (1,3;1,4)-ß-glucan, as denoted by the ratio of cellotriosyl to cellotetraosyl residues (DP3:DP4 ratio) was assessed by chromatography (HPLC and HPAEC-PAD). The distribution and deposition of the MLG was examined using the specific antibody BG-1 and captured using fluorescence and transmission electron microscopy (TEM). RESULTS: The cellulose synthase gene superfamily contains 13 CesA and 35 Csl genes in Setaria. Transcript profiling of CslF, CslH and CslJ gene families across a vegetative tissue series indicated that SvCslF6 transcripts were the most abundant relative to all other Csl transcripts. The amounts of (1,3;1,4)-ß-glucan in Setaria vegetative tissues ranged from 0.2% to 2.9% w/w with much smaller amounts in developing grain (0.003% to 0.013% w/w). In general, the amount of (1,3;1,4)-ß-glucan was greater in younger than in older tissues. The DP3:DP4 ratios varied between tissue types and across developmental stages, and ranged from 2.4 to 3.0:1. The DP3:DP4 ratios in developing grain ranged from 2.5 to 2.8:1. Micrographs revealing the distribution of (1,3;1,4)-ß-glucan in walls of different cell types and the data were consistent with the quantitative (1,3;1,4)-ß-glucan assays. CONCLUSION: The characteristics of the cellulose synthase gene superfamily and the accumulation and distribution of (1,3;1,4)-ß-glucans in Setaria are similar to those in other C4 grasses, including sorghum. This suggests that Setaria is a suitable model plant for cell wall polysaccharide biology in C4 grasses.


Asunto(s)
Pared Celular/metabolismo , Glucosiltransferasas/genética , Polisacáridos/genética , Setaria (Planta)/genética , beta-Glucanos/metabolismo , Glucosiltransferasas/metabolismo , Filogenia , Polisacáridos/metabolismo , Setaria (Planta)/citología , Setaria (Planta)/metabolismo
19.
J Integr Plant Biol ; 57(4): 429-45, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25661466

RESUMEN

In cereals, the presence of soluble polysaccharides including (1,3;1,4)-ß-glucan has downstream implications for human health, animal feed and biofuel applications. Sorghum bicolor (L.) Moench is a versatile crop, but there are limited reports regarding the content of such soluble polysaccharides. Here, the amount of (1,3;1,4)-ß-glucan present in sorghum tissues was measured using a Megazyme assay. Very low amounts were present in the grain, ranging from 0.16%-0.27% (w/w), while there was a greater quantity in vegetative tissues at 0.12-1.71% (w/w). The fine structure of (1,3;1,4)-ß-glucan, as denoted by the ratio of cellotriosyl and cellotetraosyl residues, was assessed by high performance liquid chromatography (HPLC) and ranged from 2.6-3:1 in the grain, while ratios in vegetative tissues were lower at 2.1-2.6:1. The distribution of (1,3;1,4)-ß-glucan was examined using a specific antibody and observed with fluorescence and transmission electron microscopy. Micrographs showed a variable distribution of (1,3;1,4)-ß-glucan influenced by temporal and spatial factors. The sorghum orthologs of genes implicated in the synthesis of (1,3;1,4)-ß-glucan in other cereals, such as the Cellulose synthase-like (Csl) F and H gene families were defined. Transcript profiling of these genes across sorghum tissues was carried out using real-time quantitative polymerase chain reaction, indicating that, as in other cereals, CslF6 transcripts dominated.


Asunto(s)
Vías Biosintéticas/genética , Genes de Plantas , Familia de Multigenes , Sorghum/genética , beta-Glucanos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/metabolismo , Semillas/ultraestructura , Sorghum/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA