Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am Soc Clin Oncol Educ Book ; 43: e389956, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37167572

RESUMEN

Most thoracic cancers arise via a series of stepwise somatic alterations driven by a well-defined carcinogen (ie, tobacco or asbestos for lung cancer and mesothelioma, respectively). A small proportion can emerge on a background of pathogenic germline variants (PGVs), which have the property of heritability. In general, PGVs may be initially suspected on the basis of the presence of specific clinical features. Such gene × environment interactions significantly increase the risk of developing lung cancer (1.5- to 3.2-fold). PGVs have been discovered involving the actionable driver oncogene, epidermal growth factor receptor (EGFR), with an EGFR T790M PGV rate of 0.3%-0.9% in the nonsquamous non-small-cell lung cancer subtype. Its appearance during routine somatic DNA sequencing in those patients who have not had a previous tyrosine kinase inhibitor should raise suspicion. In patients with sporadic mesothelioma, BAP1 is the most frequently mutated tumor driver, with a PGV rate between 2.8% and 8%, associated with a favorable prognosis. BAP1 PGVs accelerate mesothelioma tumorigenesis after asbestos exposure in preclinical models and may be partly predicted by clinical criteria. At present, routine germline genetic testing for thoracic cancers is not a standard practice. Expert genetic counseling is, therefore, required for patients who carry a PGV. Ongoing studies aim to better understand the natural history of patients harboring PGVs to underpin future cancer prevention, precise counseling, and cancer management with the goal of improving the quality and length of life.


Asunto(s)
Amianto , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/etiología , Receptores ErbB/genética , Mutación , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Inhibidores de Proteínas Quinasas , Mutación de Línea Germinal , Células Germinativas/metabolismo , Predisposición Genética a la Enfermedad
2.
Oncogene ; 42(8): 572-585, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36550359

RESUMEN

The tumour suppressor BRCA1-associated protein 1 (BAP1) is the most frequently mutated cancer gene in mesothelioma. Here we report novel functions for BAP1 in mitotic progression highlighting the relationship between BAP1 and control of genome stability in mesothelioma cells with therapeutic implications. Depletion of BAP1 protein induced proteasome-mediated degradation of BRCA1 in mesothelioma cells while loss of BAP1 correlated with BRCA1 loss in mesothelioma patient tumour samples. BAP1 loss also led to mitotic defects that phenocopied the loss of BRCA1 including spindle assembly checkpoint failure, centrosome amplification and chromosome segregation errors. However, loss of BAP1 also led to additional mitotic changes that were not observed upon BRCA1 loss, including an increase in spindle length and enhanced growth of astral microtubules. Intriguingly, these consequences could be explained by loss of expression of the KIF18A and KIF18B kinesin motors that occurred upon depletion of BAP1 but not BRCA1, as spindle and astral microtubule defects were rescued by re-expression of KIF18A and KIF18B, respectively. We therefore propose that BAP1 inactivation causes mitotic defects through BRCA1-dependent and independent mechanisms revealing novel routes by which mesothelioma cells lacking BAP1 may acquire genome instability and exhibit altered responses to microtubule-targeted agents.


Asunto(s)
Proteína BRCA1 , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Proteínas Supresoras de Tumor , Ubiquitina Tiolesterasa , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Segregación Cromosómica , Genes Supresores de Tumor , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias Pulmonares/patología , Mesotelioma/patología , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Microtúbulos/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
3.
BMJ Open ; 13(11): e073120, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993149

RESUMEN

BACKGROUND: Malignant mesothelioma is a rapidly lethal cancer that has been increasing at an epidemic rate over the last three decades. Targeted therapies for mesothelioma have been lacking. A previous study called MiST1 (NCT03654833), evaluated the efficacy of Poly (ADP-ribose) polymerase (PARP) inhibition in mesothelioma. This study met its primary endpoint with 15% of patients having durable responses exceeding 1 year. Therefore, there is a need to evaluate PARP inhibitors in relapsed mesothelioma patients, where options are limited. Niraparib is the PARP inhibitor used in NERO. METHODS: NERO is a multicentre, two-arm, open-label UK randomised phase II trial designed to evaluate the efficacy of PARP inhibition in relapsed mesothelioma. 84 patients are being recruited. NERO is not restricted by line of therapy; however, eligible participants must have been treated with an approved platinum based systemic therapy. Participants will be randomised 2:1, stratified according to histology and response to prior platinum-based chemotherapy, to receive either active symptom control (ASC) and niraparib or ASC alone, for up to 24 weeks. Participants will be treated until disease progression, withdrawal, death or development of significant treatment limiting toxicity. Participants randomised to niraparib will receive 200 or 300 mg daily in a 3-weekly cycle. The primary endpoint is progression-free survival, where progression is determined by modified Response Evaluation Criteria in Solid Tumors (mRECIST) or RECIST 1.1; investigator reported progression; or death from any cause, whichever comes first. Secondary endpoints include overall survival, best overall response, 12-week and 24 week disease control, duration of response, treatment compliance and safety/tolerability. If NERO shows niraparib to be safe and biologically effective, it may lead to future late phase randomised controlled trials in relapsed mesothelioma. ETHICS AND DISSEMINATION: The study received ethical approval from London-Hampstead Research Ethics Committee on 06-May-2022 (22/LO/0281). Data from all centres will be analysed together and published as soon as possible. TRIAL REGISTRATION NUMBER: ISCRTN16171129; NCT05455424.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Centros de Atención Secundaria , Mesotelioma/tratamiento farmacológico , Mesotelioma/patología , Reino Unido , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto , Ensayos Clínicos Fase II como Asunto
4.
Cancer Res ; 82(24): 4571-4585, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36353752

RESUMEN

Myofibroblastic cancer-associated fibroblast (myoCAF)-rich tumors generally contain few T cells and respond poorly to immune-checkpoint blockade. Although myoCAFs are associated with poor outcome in most solid tumors, the molecular mechanisms regulating myoCAF accumulation remain unclear, limiting the potential for therapeutic intervention. Here, we identify ataxia-telangiectasia mutated (ATM) as a central regulator of the myoCAF phenotype. Differentiating myofibroblasts in vitro and myoCAFs cultured ex vivo display activated ATM signaling, and targeting ATM genetically or pharmacologically could suppress and reverse differentiation. ATM activation was regulated by the reactive oxygen species-producing enzyme NOX4, both through DNA damage and increased oxidative stress. Targeting fibroblast ATM in vivo suppressed myoCAF-rich tumor growth, promoted intratumoral CD8 T-cell infiltration, and potentiated the response to anti-PD-1 blockade and antitumor vaccination. This work identifies a novel pathway regulating myoCAF differentiation and provides a rationale for using ATM inhibitors to overcome CAF-mediated immunotherapy resistance. SIGNIFICANCE: ATM signaling supports the differentiation of myoCAFs to suppress T-cell infiltration and antitumor immunity, supporting the potential clinical use of ATM inhibitors in combination with checkpoint inhibition in myoCAF-rich, immune-cold tumors.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Fibroblastos Asociados al Cáncer , Inmunoterapia , Neoplasias , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Diferenciación Celular , Miofibroblastos/metabolismo , Resistencia a Antineoplásicos
5.
J Thorac Oncol ; 17(7): 873-889, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35462085

RESUMEN

The most common malignancies that develop in carriers of BAP1 germline mutations include diffuse malignant mesothelioma, uveal and cutaneous melanoma, renal cell carcinoma, and less frequently, breast cancer, several types of skin carcinomas, and other tumor types. Mesotheliomas in these patients are significantly less aggressive, and patients require a multidisciplinary approach that involves genetic counseling, medical genetics, pathology, surgical, medical, and radiation oncology expertise. Some BAP1 carriers have asymptomatic mesothelioma that can be followed by close clinical observation without apparent adverse outcomes: they may survive many years without therapy. Others may grow aggressively but very often respond to therapy. Detecting BAP1 germline mutations has, therefore, substantial medical, social, and economic impact. Close monitoring of these patients and their relatives is expected to result in prolonged life expectancy, improved quality of life, and being cost-effective. The co-authors of this paper are those who have published the vast majority of cases of mesothelioma occurring in patients carrying inactivating germline BAP1 mutations and who have studied the families affected by the BAP1 cancer syndrome for many years. This paper reports our experience. It is intended to be a source of information for all physicians who care for patients carrying germline BAP1 mutations. We discuss the clinical presentation, diagnostic and treatment challenges, and our recommendations of how to best care for these patients and their family members, including the potential economic and psychosocial impact.


Asunto(s)
Neoplasias Pulmonares , Melanoma , Mesotelioma Maligno , Mesotelioma , Neoplasias Cutáneas , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirugía , Melanoma/genética , Mesotelioma/diagnóstico , Mesotelioma/genética , Mesotelioma/cirugía , Calidad de Vida , Neoplasias Cutáneas/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
6.
Cancers (Basel) ; 13(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34067960

RESUMEN

Malignant pleural mesotheliomas (MPMs) are characterised by their wide variation in natural history, ranging from minimally to highly aggressive, associated with both interpatient and intra-tumour genomic heterogeneity. Recent insights into the nature of this genetic variation, the identification of drivers, and the emergence of novel strategies capable of targeting vulnerabilities that result from the inactivation of key tumour suppressors suggest that new approaches to molecularly strategy therapy for mesothelioma may be feasible.

7.
Nat Commun ; 12(1): 1751, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741915

RESUMEN

Malignant Pleural Mesothelioma (MPM) is typically diagnosed 20-50 years after exposure to asbestos and evolves along an unknown evolutionary trajectory. To elucidate this path, we conducted multi-regional exome sequencing of 90 tumour samples from 22 MPMs acquired at surgery. Here we show that exomic intratumour heterogeneity varies widely across the cohort. Phylogenetic tree topology ranges from linear to highly branched, reflecting a steep gradient of genomic instability. Using transfer learning, we detect repeated evolution, resolving 5 clusters that are prognostic, with temporally ordered clonal drivers. BAP1/-3p21 and FBXW7/-chr4 events are always early clonal. In contrast, NF2/-22q events, leading to Hippo pathway inactivation are predominantly late clonal, positively selected, and when subclonal, exhibit parallel evolution indicating an evolutionary constraint. Very late somatic alteration of NF2/22q occurred in one patient 12 years after surgery. Clonal architecture and evolutionary clusters dictate MPM inflammation and immune evasion. These results reveal potentially drugable evolutionary bottlenecking in MPM, and an impact of clonal architecture on shaping the immune landscape, with potential to dictate the clinical response to immune checkpoint inhibition.


Asunto(s)
Deleción Cromosómica , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mutación , Neoplasias Pleurales/genética , Proteínas Supresoras de Tumor/genética , Células Clonales/metabolismo , Células Clonales/patología , Análisis por Conglomerados , Estudios de Cohortes , Humanos , Estimación de Kaplan-Meier , Pronóstico , Microambiente Tumoral/genética , Proteínas Supresoras de Tumor/clasificación , Secuenciación del Exoma/métodos
8.
Blood Adv ; 2(15): 1869-1881, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30082430

RESUMEN

CD40L/interleukin-4 (IL-4) stimulation occurs in vivo in the tumor microenvironment and induces global translation to varying degrees in individuals with chronic lymphocytic leukemia (CLL) in vitro. However, the implications of CD40L/IL-4 for the translation of specific genes is not known. To determine the most highly translationally regulated genes in response to CD40L/IL-4, we carried out ribosome profiling, a next-generation sequencing method. Significant differences in the translational efficiency of DNA damage response genes, specifically ataxia-telangiectasia-mutated kinase (ATM) and the MRE11/RAD50/NBN (MRN) complex, were observed between patients, suggesting different patterns of translational regulation. We confirmed associations between CD40L/IL-4 response and baseline ATM levels, induction of ATM, and phosphorylation of the ATM targets, p53 and H2AX. X-irradiation was used to demonstrate that CD40L/IL-4 stimulation tended to improve DNA damage repair. Baseline ATM levels, independent of the presence of 11q deletion, correlated with overall survival (OS). Overall, we suggest that there are individual differences in translation of specific genes, including ATM, in response to CD40L/IL-4 and that these interpatient differences might be clinically important.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/inmunología , Ligando de CD40/inmunología , Daño del ADN , Interleucina-4/inmunología , Leucemia Linfocítica Crónica de Células B/inmunología , Biosíntesis de Proteínas/inmunología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Ligando de CD40/genética , Femenino , Rayos gamma , Histonas/genética , Histonas/inmunología , Humanos , Interleucina-4/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/efectos de la radiación , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA