Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Pathol ; 261(3): 309-322, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37650295

RESUMEN

Rapidly progressive/crescentic glomerulonephritis (RPGN/CGN) involves the formation of glomerular crescents by maladaptive differentiation of parietal epithelial cells that leads to rapid loss of renal function. The molecular mechanisms of crescent formation are poorly understood. Therefore, new insights into molecular mechanisms could identify alternative therapeutic targets for RPGN/CGN. Analysis of kidney biopsies from patients with RPGN revealed increased interstitial, glomerular, and tubular expression of STING1, an accessory protein of the c-GAS-dependent DNA-sensing pathway, which was also observed in murine nephrotoxic nephritis induced by an anti-GBM antibody. STING1 was expressed by key cell types involved in RPGN and crescent formation such as glomerular parietal epithelial cells, and tubular cells as well as by inflammation accessory cells. In functional in vivo studies, Sting1-/- mice with nephrotoxic nephritis had lower kidney cytokine expression, milder kidney infiltration by innate and adaptive immune cells, and decreased disease severity. Pharmacological STING1 inhibition mirrored these findings. Direct STING1 agonism in parietal and tubular cells activated the NF-κB-dependent cytokine response and the interferon-induced genes (ISGs) program. These responses were also triggered in a STING1-dependent manner by the pro-inflammatory cytokine TWEAK. These results identify STING1 activation as a pathological mechanism in RPGN/CGN and TWEAK as an activator of STING1. Pharmacological strategies targeting STING1, or upstream regulators may therefore be potential alternatives to treat RPGN. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Glomerulonefritis , Nefritis , Humanos , Ratones , Animales , Glomerulonefritis/genética , Riñón/patología , Glomérulos Renales/patología , Enfermedad Aguda , Citocinas/metabolismo
2.
Biomed Pharmacother ; 169: 115925, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38007933

RESUMEN

BACKGROUND: Rhabdomyolysis is a severe clinical syndrome associated to acute kidney injury (AKI) and chronic kidney disease (CKD). TWEAK/Fn14 signaling axis regulates renal inflammation and tubular cell death. However, the functional role of TWEAK/Fn14 in rhabdomyolysis remains unknown. METHODS: Rhabdomyolysis was induced in wild-type, TWEAK- and Fn14-deficient mice or mice treated with TWEAK blocking antibody. Renal injury, inflammation, fibrosis and cell death were assessed. Additionally, we performed in vivo and in vitro studies to explore the possible signalling pathways involved in Fn14 regulation. FINDINGS: Fn14 renal expression was increased in mice with rhabdomyolysis, correlating with decline of renal function. Mechanistically, myoglobin (Mb) induced Fn14 expression via ERK and p38 pathway, whereas Nrf2 activation diminished Mb-mediated Fn14 upregulation in cultured renal cells. TWEAK or Fn14 genetic depletion ameliorated rhabdomyolysis-associated loss of renal function, histological damage, tubular cell death, inflammation, and expression of both tubular and endothelial injury markers. Deficiency of TWEAK or Fn14 also decreased long-term renal inflammation and fibrosis in mice with rhabdomyolysis. Finally, pharmacological treatment with a blocking TWEAK antibody diminished the expression of acute renal injury markers and cell death and lessened residual kidney fibrosis and chronic inflammation in rhabdomyolysis. INTERPRETATION: TWEAK/Fn14 axis participates in the pathogenesis of rhabdomyolysis-AKI and subsequent AKI-CKD transition. Blockade of this signaling pathway may represent a promising therapeutic strategy for reducing rhabdomyolysis-mediated renal injury. FUNDING: Spanish Ministry of Science and Innovation, ISCIII and Junta de Andalucía.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Rabdomiólisis , Animales , Ratones , Lesión Renal Aguda/metabolismo , Citocina TWEAK/metabolismo , Fibrosis , Inflamación , Rabdomiólisis/complicaciones , Factores de Necrosis Tumoral/metabolismo , Receptor de TWEAK/metabolismo
3.
Front Pharmacol ; 13: 987979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36386242

RESUMEN

The type I interferon (TI-IFN) pathway regulates innate immunity, inflammation, and apoptosis during infection. However, the contribution of the TI-IFN pathway or upstream signaling pathways to tubular injury in kidney disease is poorly understood. Upon observing evidence of activation of upstream regulators of the TI-IFN pathway in a transcriptomics analysis of murine kidney tubulointerstitial injury, we have now addressed the impact of the TI-IFN and upstream signaling pathways on kidney tubulointerstitial injury. In cultured tubular cells and kidney tissue, IFNα/ß binding to IFNAR activated the TI-IFN pathway and recruited antiviral interferon-stimulated genes (ISG) and NF-κB-associated proinflammatory responses. TWEAK and lipopolysaccharide (LPS) signaled through TBK1/IKKε and IRF3 to activate both ISGs and NF-κB. In addition, TWEAK recruited TLR4 to stimulate TBK1/IKKε-dependent ISG and inflammatory responses. Dual pharmacological inhibition of TBK1/IKKε with amlexanox decreased TWEAK- or LPS-induced ISG and cytokine responses, as well as cell death induced by a complex inflammatory milieu that included TWEAK. TBK1 or IRF3 siRNA prevented the TWEAK-induced ISG and inflammatory gene expression while IKKε siRNA did not. In vivo, kidney IFNAR and IFNß were increased in murine LPS and folic acid nephrotoxicity while IFNAR was increased in human kidney biopsies with tubulointerstitial damage. Inhibition of TBK1/IKKε with amlexanox or IFNAR neutralization decreased TI-IFN pathway activation and protected from kidney injury induced by folic acid or LPS. In conclusion, TI-IFNs, TWEAK, and LPS engage interrelated proinflammatory and antiviral responses in tubular cells. Moreover, inhibition of TBK1/IKKε with amlexanox, and IFNAR targeting, may protect from tubulointerstitial kidney injury.

4.
Sci Rep ; 10(1): 2056, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029842

RESUMEN

The lack of effective pharmacological treatments for acute kidney injury (AKI) remains a significant public health problem. Given the involvement of apoptosis and regulated necrosis in the initiation and progression of AKI, the inhibition of cell death may contribute to AKI prevention/recovery. Curcuminoids are a family of plant polyphenols that exhibit attractive biological properties that make them potentially suitable for AKI treatment. Now, in cultured tubular cells, we demonstrated that a crosslinked self-assembled star-shaped polyglutamate (PGA) conjugate of bisdemethoxycurcumin (St-PGA-CL-BDMC) inhibits apoptosis and necroptosis induced by Tweak/TNFα/IFNγ alone or concomitant to caspase inhibition. St-PGA-CL-BDMC also reduced NF-κB activation and subsequent gene transcription. In vivo, St-PGA-CL-BDMC prevented renal cell loss and preserved renal function in mice with folic acid-induced AKI. Mechanistically, St-PGA-CL-BDMC inhibited AKI-induced apoptosis and expression of ferroptosis markers and also decreased the kidney expression of genes involved in tubular damage and inflammation, while preserving the kidney expression of the protective factor, Klotho. Thus, due to renal accumulation and attractive pharmacological properties, the application of PGA-based therapeutics may improve nephroprotective properties of current AKI treatments.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Diarilheptanoides/farmacología , Túbulos Renales/efectos de los fármacos , Ácido Poliglutámico/farmacología , Sustancias Protectoras/farmacología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Línea Celular , Diarilheptanoides/química , Diarilheptanoides/uso terapéutico , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Ácido Fólico/toxicidad , Glucuronidasa/metabolismo , Humanos , Túbulos Renales/patología , Proteínas Klotho , Ratones , Conformación Molecular , FN-kappa B/metabolismo , Necrosis/tratamiento farmacológico , Necrosis/inmunología , Necrosis/patología , Ácido Poliglutámico/química , Ácido Poliglutámico/uso terapéutico , Sustancias Protectoras/química , Sustancias Protectoras/uso terapéutico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Relación Estructura-Actividad , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA